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FOREWORD

Based on a rich scientific tradition, the Academy of Romanian Sci-
entists (ARS) is the continuator and the unique heir of the Romanian
Academy of Sciences (1936-1948). Then, together with the Academy of Med-
ical Sciences and the Romanian Academy, it was included (by Decree of the
Great National Assembly) into the Academy of the Romanian Popular Re-

public, with Academician Traian Savulescu as president.

In 1956, Academician Traian Savulescu, together with other scientists
and members of the Academy, created the Association of the Romanian Sci-
entists, as a partial compensation for the disappearance of the Academy of
Romanian Scientists. In 1996, at the first National Congress of the Ro-
manian Scientists (with international participation) the denomination Aca-
demy of Romanian Scientists was readopted, with the same sigle and
the same NGO statute as in 1936.

By the Decree 52, from January 12, 2007, ARS was recognized as an in-
stitution of public interest, situated between the Romanian Academy and the
specialized Academies and enjoying the status of chief accountant of public
funds.

The Annals of the Academy of Romanian Scientists reappeared and
continued, during 2006-2007, the tradition from 1936, with one volume every
year. Starting with 2008, the Annals are published observing the internation-
ally recognized standards and as several independent series, for each section

of ARS.



It is my real pleasure to congratulate now the members of the Mathemat-
ical Section of ARS and the members of the Editorial Board for launching
the series on Mathematics and its Applications, of the Annals. To all of
them and to the technical staff involved in the production of the journal, my

sincere thanks for their work and my best wishes of success in the future
activity.

Gen (r). Prof. dr. Vasile Cdndea

President of the Academy of Romanian Scientists
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EDITORIAL

The Annals of the Academy of Romanian Scientists include sci-
entific journals for all major subject areas of the Academy of Romanian

Scientists as a reference source for the scientific community in Romania.

We are now launching the first number of the series on Mathematics
and its Applications which joins the already existing series on Information
Science and Technology. Other series will be published in the near future to
Sulfill the mission assumed by ARS.

We are promoting papers of very good scientific level, making advances in
the conceptual understanding and providing new insights into related fields,
the basis for future developments. The papers should have a broad appeal
to the scientific commumnity and contributions from young scientists are also
encouraged. They will be assessed by our referees, trusted researchers in their
fields of activity.

On this occasion, I want to thank all members of the Editorial Board,
the colleagues who submitted papers or acted as referees and the staff that
contributes to the publication of the Annals of ARS. To all of them, our

best wishes of success in this new enterprise and in their activity in general.

Acad. Aureliu Sandulescu

President of the Mathematical Section of ARS
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ANALYSIS AND NUMERICAL
APPROACH OF A PIEZOELECTRIC
CONTACT PROBLEM*

Mikael Barboteu! Mircea Sofoneal

Abstract

We consider a mathematical model which describes the frictional
contact between an electro-viscoelastic body and a conductive founda-
tion. The contact is modelled with normal compliance and a version
of Coulomb’s law of dry friction, in which the stiffness and friction
coefficients depend on the electric potential. We derive a variational
formulation of the problem and, under a smallness assumption, we
prove an existence and uniqueness result. The proof is based on argu-
ments on evolutionary variational inequalities and fixed point. Then,
we introduce the fully discretized problem and present numerical sim-
ulations in the study of a two-dimensional test problem which describe
the process of contact in a microelectromechanical swich.

keywords: electro-viscoelastic material, normal compliance, Coulomb’s
law, variational inequality, weak solution, finite element method, numerical
simulations.
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1 Introduction

Contact phenomena involving deformable bodies arise in industry and ev-
eryday life and play important roles in structural and mechanical systems.
Owning to the complicated surface physics involved, they lead to new and
nonstandard mathematical models. Considerable progress has been achieved
recently in modelling and mathematical analysis of phenomena of contact
and, as a result, a general Mathematical Theory of Contact Mechanics is
currently emerging as a discipline on its own right. Its aim is to provide a
sound, clear and rigorous background to the construction of models, their
variational analysis as well as their numerical simulations, see [9, 16] for
details.

Currently there is a considerable interest in contact problems involving
piezoelectric materials, i.e. materials characterized by the coupling between
the mechanical and electrical properties. This coupling, in a piezoelectric ma-
terial, leads to the appearance of electric potential when mechanical stress is
present and, conversely, mechanical stress is generated when electric potential
is applied. The first effect is used in mechanical sensors, and the reverse effect
is used in actuators, in engineering control equipments. Piezoelectric mate-
rials for which the mechanical properties are elastic are called electro-elastic
materials and those for which the mechanical properties are viscoelastic are
called electro-viscoelastic materials. General models for electro-elastic mate-
rials can be found in [6, 10, 14]. Frictional contact problems for electro-elastic
or electro-viscoelastic materials were studied in |7, 12, 13, 17|, under the as-
sumption that the foundation is insulated. The results in |7, 12| concern
mainly the numerical simulation of the problems while the results in [13, 17|
concern the variational formulation of the problems and their unique weak
solvability.

The study of mathematical models which describe the evolution of the
piezoelectric body in frictional or frictionless contact with a conductive foun-
dation is more recent see, for instance, |3, 4, 5, 11|. The problems studied
in [3, 4] are frictionless and describe a dynamic and a quasistatic mechanical
process for electro-viscoelastic materials, respectively. The problem studied
in [5] is frictional and is modeled with normal compliance and a version of
Coulomb’s law o dry friction, in which the stiffness and friction coefficients
depend on the electric potential; the material is assumed to be electro-elastic
and the process is static; an existence and uniqueness result was obtained,
a discrete scheme was considered, and numerical simulations were provided.
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The problem studied in [11] is frictional, too, and is modeled with the stan-
dard normal compliance contact condition and the Coulomb’s law of dry
friction; the material is assumed to be electro-viscoelastic and the process is
quasistatic; an existence and uniqueness result was obtained by using argu-
ments of evolutionary variational inequalitiesd and fixed point.

The results in the present paper are related and parallel our previous
results obtained in [5, 11]. Nevertheless, there are several major differences
between these papers, that we describe in what follows. First, we recall that
in [11] we used the standard normal compliance contact condition and the
Coulomb’s law of dry friction and, as a result, the mechanical and electrical
unknowns are decoupled on the frictional contact conditions. Unlike the
problem in [11], in the present paper the electric potential is involved in the
frictional contact conditions too, which increase the degree of nonlinearity of
the problem and requiers the use of new functionals and operators, different
to those used in [11]. Moreover, unlike [11], in the present paper we deal with
the numerical approach of the problem and provide numerical simulations. In
the present paper we use the boundary conditions on the contact surface used
recently in [5] in the study a static process for electro-elastic materials. But,
unlike 5], in the present paper we consider a quasistatic process for electro-
viscoelastic materials, which leads to an evolutionary model, different from
the stationnary model studied in [5].

To conclude, the novelty of this paper consists in the study of a frictional
contact problem for electro-viscoelastic materials which takes into account
the electric conductivity of the foundation. From the physical point of view,
the novelty arises in the fact that we let the frictional contact condition to
depend on the electric potential; from the mathematical point of view, the
novelty arises in the fact that here we provide the unique solvability of a
new model, involving new operators and new functionals, together with its
numerical approach and numerical simulations.

The manuscript is structured as follows. In Section 2 we describe the
physical setting and present the mathematical model of the contact process.
In Section 3 we list the assumption on the problem data, derive the variational
formulation of the problem and state our main existence and uniqueness
result, Theorem 1. The proof of the theorem is provided in Section 4, based
on arguments of evolutionary variational inequalities and fixed point. Finally,
in Section 5 we introduce the discretized problem, then we present numerical
simulations in the study of a two-dimensional test problem.
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2 Problem statement

We consider a body made of a piezoelectric material which occupies the
domain 2 C R? (d = 2,3) with a smooth boundary dQ = I' and a unit
outward normal v. The body is acted upon by body forces of density f
and has volume free electric charges of density go. It is also constrained
mechanically and electrically on the boundary. To describe these constraints
we assume a partition of I' into three open disjoint parts I'y, I's and I's, on
the one hand, and a partition of I'y UT's into two open parts I', and ['p, on
the other hand. We assume that measI’y > 0 and measIT', > 0. The body is
clamped on I'; and, therefore, the displacement field vanishes there. Surface
tractions of density f5 act on I's. We also assume that the electrical potential
vanishes on I'; and a surface electrical charge of density g is prescribed
on I'y. In the reference configuration the body may come in contact over
I's with an electrically conductive support, the so called foundation. The
contact is frictional and we model it with normal compliance and a version
of Coulomb’s law of dry friction. Also, since the foundation is electrically
conductive, we assume that the stiffness coefficient and the friction bound
depend on the difference between the electric potential of the body’s surface
and the electric potential of the foundation. Finally, there may be electrical
charges on the part of the body which is in contact with the foundation and
which vanish when the contact is lost.

We are interested in the deformation of the body on the time interval
[0,T]. The process is assumed to be quasistatic, i.e. the inertial effects in
the equation of motion are neglected. We denote by € QUT and ¢ € [0, T
the spatial and the time variable, respectively and, to simplify the notation,
sometimes we do not indicate the dependence of various functions on @ or
t. In this paper ,75,k,l = 1,...,d, summation over two repeated indices is
implied, and the index that follows a comma represents the partial derivative

with respect to the corresponding component of x, i.e. f; = g—f . The dot

z;
above a variable represents the time derivatives, i.e. f = % .

We use the notation S? for the space of second order symmetric tensors
on R% and “-”, || -|| will represent the inner product and the Euclidean norm
on S% and RY, respectively, that is

wov=uwy, ) = (v-v)?
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for u = (u;), v = (v;) € R4, and
o1 =oymy. |7l = (r o)

for o = (0ij), T = (7i;) € S®. We also use the usual notation for the normal
components and the tangential parts of vectors and tensors, respectively,
given by v, = u-v, u; = u —u,v, o, = oy;vv; and o, = ov — o, V.

With the notation above, the classical model for the process is as follows.

Problem P. Find a displacement field u = (u;) : Q x [0,T] — R, a stress
field o = (045) : @ x [0,T] — S%, an electric potential ¢ : Q x [0,T] — R and
an electric displacement field D = (D;) : Q x [0,T] — R? such that

o = Ae(u) + Be(u) — EE(p) in Qx(0,7), (2.1)

D = E&e(u) + BE(yp) in Qx(0,7), (22)

Dive + f, =0 in Qx(0,7), (2.3)
divD — gy =0 inQx(0,7), (2.4)
u=0 onI'y x (0,7), (2.5)

ov =Ff, onI'y x (0,7), (2.6)

=0 onI'y x (0,7), (2.7)
D.-v=g onI'y x (0,7), (2.8)

—0, = hy(© — o) pu(uy — g) onI's x (0,7), (2.9)

HUTH < hT(SO - 900)])7(“1/ - 9)7
on 'y x (0,T), (2.10)

—0: = hr(p — o) pr (U — 9) ﬁ:” if 4, #0
D v =p(uy,—g)he(p — o) on I's x (0,7), (2.11)
u(0) = uo in Q. (2.12)

We now describe problem (2.1)-(2.12) and provide explanation of the
equations and the boundary conditions.

First, equations (2.1) and (2.2) represent the electro-viscoelastic consti-
tutive law in which e(u) = (ei;(u)) denotes the linearized strain tensor,
E(y) is the electric field, A and B are the viscosity and elasticity operators,
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respectively, £ = (e;j;) represents the third-order piezoelectric tensor, £* is
its transpose and B denotes the electric permittivity tensor. We recall that
gij(u) = (u;j +uj;)/2 and E(p) = =V ¢ = —(¢,;). Also, the tensors £ and
E* satisfy the equality

Eo-v=0 - Vo €S%, v eRY,

and the components of the tensor £ are given by €}, = ex;;. Equation (2.1)
indicates that the mechanical properties of the materials are described by a
viscoelastic Kelvin-Voigt constitutive relation (see [9] for details) which takes
into account the dependence of the stress field on the electric field. Relation
(2.2) describes a linear dependence of the electric displacement field D on
the strain and electric fields; such a relation has been frequently employed in
the literature (see, e.g., [6, 7] and the references therein).

Next, equations (2.3) and (2.4) are the balance equations for the stress
and electric-displacement fields, respectively, in which “Div” and “div”’ denote
the divergence operators for tensor and vector valued functions, i.e. Diveo =
(0ij,5), div.D = (D; ;). We use these equations since the process is assumed
to be quasistatic.

Conditions (2.5) and (2.6) are the displacement and traction boundary
conditions, whereas (2.7) and (2.8) represent the electric boundary condi-
tions; these conditions show that the displacement field and the electrical
potential vanish on I'; and I',, respectively, while the forces and free electric
charges are prescribed on I'y and 'y, respectively. Also, (2.12) represents the
initial condition in which wg is the given initial displacement field.

We turn to the boundary conditions (2.9)—(2.11), already used in [5],
which describe the mechanical and electrical conditions on the potential con-
tact surface I's; there, g represents the gap in the reference configuration
between I's and the foundation, measured along the direction of v, and g
denotes the electric potential of the foundation.

First, (2.9) represents the normal compliance contact condition in which
P, is a prescribed nonnegative function which vanishes when its argument
is negative and h, is a positive function, the stiffness coefficient. Equality
(2.9) shows that when there is no contact (i.e. when u, < g) then o, =0
and therefore the normal pressure vanishes; when there is contact (i.e. when
uy > g) then o, < 0 and therefore the reaction of the foundation is towards
the body.

Condition (2.10) is the associated friction law where p; is a given function
and h; is the coefficient of friction. According to (2.10) the tangential shear
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cannot exceed the maximum frictional resistance h. (¢ — o) pr(u, — g), the
so-called friction bound. Moreover, when sliding commences, the tangential
shear reaches the friction bound and opposes the motion.

Frictional contact conditions of the form (2.9), (2.10) have been used
in the study of various piezoelectric contact problems, see, e.g. [11, 17|
and the references therein. Unlike these references, we assume here that
the stiffness coefficient h, and the coefficient of friction h; depend on the
difference between the potential on the foundation and the body’s surface.

Finally, (2.11) is a regularized electrical contact condition on I's, similar
to that already used in [3, 4, 5, 11|. Here p, represents the electrical con-
ductivity coefficient, which vanish when its argument is negative, and h. is a
given function. Thus, condition (2.11) shows that when there is no contact
at a point on the surface (i.e. when u, < g) then the normal component of
the electric displacement field vanishes, and when there is contact (i.e. when
u, > g) then there may be electrical charges which depend on the difference
between the potential of the foundation and the body’s surface.

Because of the frictional condition (2.10), which is non-smooth, we do
not expect the problem to have, in general, any classical solutions. For this
reason, we derive in the next section a variational formulation of the problem,
then we investigate its weak solvability.

3 Variational formulation

We turn now to the variational formulation of the problem and, to this end,
we need additional notation and preliminaries. We use standard notation
for the LP and the Sobolev spaces associated with Q and I'; moreover, for
a function ¥ € H(Q) we still write ¥ to denote its trace on I'. Besides
the space L4(Q)? endowed with the canonic inner product (-, -) ra(o)e and the
associated norm | -{|L4(q)a, for the unknowns of Problem P we use the spaces

Q={7=(r): mj=m€ LX)},
V={veH)?: v=0 on I},
W={yecH(Q): =0 on T, }.

The space @ is a real Hilbert space endowed with the inner product

(O',T)Q/O'ijﬂ'jdl‘
Q
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and the associated norm || - [|g. Also, since measI'y > 0 and measT'y > 0, it
is well known that V and W are real Hilbert spaces endowed with the inner
products

(u7 U)V = (E(u)7€(v))Q7 (Qoﬂp)W = (V% Vf‘/})Lz(Q)d

and the associated norms || - ||y and || - ||w, respectively. Moreover, by the
Sobolev trace theorem, there exists two positive constants ¢y and ¢y which
depend on €, I'y and I's such that

[0llr2rge < collvlly Vo eV, ([lzmy,) <colvllw VoeW. (3.1)

Finally, if (X,| - ||lx) represents a real Banach space, we denote by
C([0,7); X) and C1([0, T]; X) the spaces of continuous and continuously dif-
ferentiable functions on [0, 7] with values on X, with the norms

) = t
e o,77:x) e ()] x,

x .x) = max ||x(t + max ||a(t .
oo ) = mase [2(0)]x + max e (0)]x
Recall that, here and below, the dot represents the derivative with respect
to the time variable.

In the study of the mechanical problem (2.1)—(2.12) we assume that the
viscosity operator A, the elasticity operator 13, the piezoelectric tensor £ and
the electric permittivity tensor 3 satisfy

((a) A: QxS? — §9,

(b) There exists L4 > 0 such that
A, €,) — Az, &) < Lallé; — &
VELE, €S ae Q.

(c) There exists m 4 > 0 such that
(A, &) — A, &,)) - (&1 — &) > mall€, — &l
VE € €SY ae e

(d) The mapping x — A(x, &) is Lebesgue measurable on €2,
for any & € S%.

(e) The mapping « — A(x, 0) belongs to Q.

(3.2)
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(a) B: Q xS — s,
(b) There exists Lg > 0 such that

1B(,€,) — B(a,&,)|| < Lsllé; — &

VE & € Sd, a.e. ¢ € . (3.3)
(¢) The mapping x — B(x, £) is measurable on €2,

for any & € S%.

(d) The mapping x — B(x,0) belongs to Q.

(a) £: QxS — R4
(b) E(x,T) = (eijr(x)TjK) VT = (T45) € St ae xcQ.  (34)
(c) eijk = eik; € L°(Q).

(a) B: QxR — RY.

(b) B(z, E) = (8;j(x)E;) VE=(E) € R, ae zcq.

(c) Bij = Bji € L=(Q). (3.5)
(d) There exists mg > 0 such that B;(z)E;E; > mg| E|?

VE = (E;) € R%, ae. x Q.
The functions p, and h, (for r = v, 7, e) are such that

(a) pr: '3 x R — R.
(b) There exists L, > 0 such that
Ipr(,u1) — pr(x,uz)| < Lplup — ug| Yuy, us € IR, ae. x € Ts.
(c) There exists p, > 0 such that (3.6)
0<p(x,u) <P, Vue R, ae. xels.
(d) The mapping « — p,(x,u) is measurable on I's, for any u € IR.
(e) pr(x,u) =0 Yu<0, ae. x el

( (a) hy : I's xR — IR, forr=v, 7, e.
(b) There exists I, > 0 such that
|he(®,01) = ho (@, 02)| < lr|p1 — 2
Vo1, o2 € R, ae. x € 's, forr=v, 7, €.
(c) There exists h, > 0 such that
0<hp(xz,0) <h.VoeR, ae. z €Iz, forr=v, .
(d) There exists he > 0 such that
|he(z,0)| < he Vo € R, ae. x € 3.
(e) The mapping @ +— h,(x,u) is measurable on I's,
for any ¢ € R, for r =v, 7, e.

(3.7)
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The forces, tractions, volume and surface free charge densities satisfy
foe C(O.THLAQ)Y),  foeC(0.TL*T2)Y),  (3.8)
@ € C(0,T}; L*(Q)),  a € C(0,T]; L*(I'y)). (3.9)

Finally, we assume that the gap function, the potential of the foundation
and the initial displacement satisfy

ge L*T3), ¢g>0 ae onls, (3.10)
o € L*(T), (3.11)
wy € V. (3.12)

Next, we define the four mappings J : WxVxV — R, G: VW xW —
R, f:[0,7] — V and ¢ : [0,T] — W, respectively, by

J(Q‘% u, ’U) = /F hV(‘:D - @O)pl/(ul/ - g)vl/ da (313)
+ /F he(2 = 00) pr (uy — )| | da

G(u’ P, 7/}) = /1_‘ pe(uu - g) he((,D - 900)711) dav (3'14)

(F(),0)v = /Q folt) v+ [ £0)-vda, (3.15)

mmwwzéwmwM—Aqum, (3.16)

for all u, v € V, ¢, € W and ¢ € [0,7]. We note that the definitions of
f and q are based on the Riesz representation theorem; moreover, it follows
from assumptions (3.6)—(3.11) that the integrals in (3.13)-(3.16) are well-
defined and, in addition

fec(o,1;Vv), (3.17)
q € C([0,T]; W). (3.18)
Finally, assumptions (3.6) and (3.7) combined with (3.1) yield
J(p1,u1,v2) — J(1,u1,v2) + J (92, u2,v1) — J (2, u2,v2) (3.19)
< c(llor = p2llw + [[ur — wsllv)llvr — vallv),

G(Ul,@lﬂf)) - G(u27§02)¢) (320)
< (coloLphellur — uslv + &lePeller — 2llw)l[¢llw,
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for all uy, ug, v1, v2 €V, @1, 2, ¥ € W, where ¢ > 0.

Using integration by parts, it is straightforward to see that if (u, o, p, D)
are sufficiently regular functions which satisfy (2.3)-(2.11) then

(a(t),e(v) —e(u(t))q + J(p(t), u(t),v) — J(p(t), u(t),u(t)) (3.21)
> (f(t),a(t) —v)v,

(D), V) r2(eya + (qt), V)w = G(u(t), ¢(t)), ¥), (3.22)
forallv € V, ¢ € W and t € [0,T]. We substitute (2.1) in (3.21), (2.2)
in (3.22), note that E(p) = —V and use the initial condition (2.12). As a
result we obtain the following variational formulation of problem P.

Problem Py. Find a displacement field w : [0,T] — V and an electric
potential ¢ : [0,T] — W such that

(Ae(a(t)), e(v) —e(u(t)))q + (Be(u(t)), e(v) — e(u(t)))q (3.23)
+(EV(t),e(v) —e(u(t))q + J(p(t), u(t), v) — J(p(t), u(t), u(t))
= (f(t),v—u(t))v,
forallv eV andt € (0,7,
(BVo(t), V) 12(qya — (Ee(u(t)), Vi) 2 (q)a (3.24)
+G(u(t), p(1), %) = (a(t), ¥)w,

for allyy € W and t € [0,T], and

u(0) = uyg. (3.25)

To study problem Py we make the smallness assumption
&P < mpg, (3.26)

where ¢, I, P, and mg are given in (3.1) (3.7), (3.6) and (3.5), respectively.
We note that only the trace constant, the Lipshitz contant of h., the bound
of pe and the coercivity constant of 3 and are involved in (3.26); therefore,
this smallness assumption involves only the geometry and the electrical part,
and does not depend on the mechanical data of the problem. Moreover, it is
satisfied when the obstacle is insulated, since then p. = 0 and so p, = 0.

Our main existence and uniqueness result that we state now and prove
in the next section is the following.
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Theorem 1. Assume that (3.2)~(3.12) and (3.26) hold. Then Problem Py
has a unique solution which satisfies

ue CL0,T);V), ¢eC(0,T];W). (3.27)

A quadruple of functions (u, o, ¢, D) which satisfies (2.1), (2.2), (3.23)—
(3.25) is called a weak solution of the piezoelectric contact problem P. It
follows from Theorem 1 that, under the assumptions (3.2)-(3.12), (3.26),
there exists a unique weak solution of Problem P. To precise the regularity
of the weak solution we note that the constitutive relations (2.1) and (2.2),
assumptions (3.2)-(3.5) and regularity (3.27) imply that

oecC(0,T:Q), DecC(0,T);L*(Q)). (3.28)

Moreover, using again (2.1), (2.2) combined with (3.23), (3.24) and the no-
tation (3.13)—(3.16), after standard arguments we obtain that Dive(t) +
fo(t) = 0 and div D(t) = qo(t), for all t € [0,7]. It follows now from the
regularity (3.8) and (3.9) that

Dive € C([0,T]; L>()%),  divD e C([0,T]; L*(Q)). (3.29)

We conclude that the weak solution (u, o, ¢, D) of the piezoelectric contact
problem P has the regularity (3.27)-(3.29).

4 Proof of Theorem 1

We turn now to the proof of Theorem 1 which will be carried out in several
steps. We assume in what follows that (3.2)-(3.12) and (3.26) hold and,
everywhere below, we denote by c¢ various positive constants which are inde-
pendent on time and whose value may change from line to line. We consider
the product space X =V x W together with the inner product

($,y)X = (uvv)V + (va'w)W Vo = (UaSO)a Y= (’U,l/)) eX

and the associated norm || - ||x. Let n = (n;,12) € C([0,T], X) be given. In
the first step, we consider the following intermediate problem.

Problem sz‘sp_ Find a displacement field w, : [0,T] — V such that
(Ae(ty (1)), €(v) — e(uy(t)))q + (Be(ni (), e(v) —e(uy(t))e  (4.1)
H(E V() e(v) — ey (1)) + J(n2(t), m (1), v)
_J("D(t)vnl(t)’u??(t)) > (f(t)vv - ’lln(t))v Vv e V7 te [O’T]v
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uy(0) = ug. (4.2)

disp

In the study of the variational problem P, ™" we have the following result.

Lemma 1. There ezists a unique solution u, € C1([0,T],V) to the problem
(4.1)—(4.2). Moreover, if uy and uy are two solutions of problem (4.1)—(4.2)
corresponding to the data n* = (ni,n), n* = (n?,n3) € C([0,T),X) then
there exists ¢ > 0 such that

[ () — w2 (t)[lv < cllni(t) —ma(t)[x Vi e[0,T]. (4.3)

Proof. We use classical results on elliptic variational inequalities (see [9,
p. 60]) to deduce that, for each ¢t € [0,7], there exists a unique element
vy (t) € V such that

(Ae(wy(t), e(v) — e(vy(t))q + (Be(n:(t)), e(v) — e(vy(t)))q (4.4)
H(EV(t),e(v) —e(vy(t)))q + J(n2(t), 1 (1), v)
—J(12(t), 1 (), vy (1)) = (F (), v —vy(t))y VveV.

Let t1, ty € [0,T]; using (4.4) for t = t; and t = t9, we easily derive the
inequality

(Ae(vy(t1)) — Ae(vy(ta)), e(vy(t1)) — e(vy(t2)))q
< (Be(ny(t1)) — Be(my(t2)), €(vy(t2)) — e(vy(t1)))q +
+(E*Vna(t1) — EVipa(ta), e(vy(t2)) — e(vy(t1)))q
+J(2(t1), M1 (t1), vy (t2)) — J(ma2(t1), 1 (t1), vy (t1))
+J(n2(t2), m1(t2), vy (t1)) — J(n2(t2), M1 (t2), vy (t2))
+(f(t1) = f(t2), vy(t1) — vy(t2))v.

Then, we use assumptions (3.2), (3.3), (3.4) and (3.19) to obtain

vy (t1) — vp(t2)llv < c(llny(t1) — ni(t2)llv (4.5)
Flm2(tr) —na(ta)lw + | f (t1) — £ (t2)[lv).

From (4.5), (3.17) and the regularity of 7 it follows that v, € C([0,77;V).
Let wu, : [0,7] — V be the function defined by

u,(t) = /0 vy (s) ds + ug, vt € [0,T]. (4.6)
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It follows from (4.6) and (4.4) that u, is a solution of Problem 77767%8” and,
moreover, u, € C'([0,T];V). This proves the existence part of Lemma 1.
The uniqueness part follows from the unique solvability of the variational
inequality (4.4) at each t € [0,T].

Let now denote by u; and wus the solutions of problem (4.1)—(4.2) cor-
responding to the data n* = (ni,nd), n? = (n?,n3) € C([0,T], X) and let
U] = v1, Uz = vy. Arguments similar to those used in the proof of (4.5) lead
to

e (t) = ax@®)llv < e(Imi(t) =mi@®llv + Iz (t) = 3 @)llv) Yt € [0,7],
which shows that (4.3) holds. 0

In the next step we use the solution u,, € C1([0,T], V) obtained in Lemma
1 to construct the following variational problem.

Problem PgOt. Find an electric potential field o, : [0,T] — W such that

(BVoy(t), Vib) 12 qpa — (Ee(uy(t)), Vi) 120 (4.7)
+G(uy(t),m2(t),¥) = (¢(t), )w VY e W, t€[0,T]

The well-posedness of the problem 77777’“ is given by the following result.

Lemma 2. There exists a unique solution @, € C([0,T); W) which satisfies
(4.7). Moreover, if uy, us and p1, @2 are two solutions of of (4.1)-(4.2) and
(4.7), respectively, corresponding to ny, ny € C([0,T]; X), then there exists
c > 0 such that

[p1(t) — p2(B)lw < cllui(t) —ua(t)|lv (4.8)

GlePe 1 1 2 v T
+=—ln () —n"@t)llx Vvtel0,T].
mg

Proof. It follows from (3.5) that the bilinear form
a((ﬂ, ¢) = (16ng7 v¢)L2(Q)d (49)

is continuous, symmetric and coercive on W. Moreover, using (3.18), (3.20),
assumption (3.4) on the piezoelectric tensor £ and the regularity w, €
C1([0,7]; V), it follows that the function g, : [0,7] — W, given by

(gn(8), V)w = (q(t), )w + (Ee(uy(t)), V) £2(q)a (4.10)
—G(uy(t),m(t),) Vo eW, tel0,T],
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is continuous. The existence and uniqueness part in Lemma 4.3 is now a
straight consequence of the well-known Lax-Milgram theorem applied to the
time-dependent variational equation

alp(t), V) = (qn(t),¥) Ve W, te[0,T],

combined with the equalities (4.9), (4.10). Moreover, the estimate (4.8)
follows from (4.7), (3.4), (3.5) and (3.20). O

We now consider the operator A : C'([0,7]; X) — C([0,T]; X) defined by
An(t) = (uy(t), ¢4(t))  Vn e C([0,T]; X)), t €[0,T]. (4.11)
The next step consists in the following result.
Lemma 3. There exists a unique n* € C([0,T]; X) such that An* = n*.

Proof. Let n' = (nl,nd), n* = (03, n3) € C([0,T); X) and, for simplicity,
we use the notation w; and ¢; for the functions u,, and ¢, obtained in
Lemmas 1 and 2, for i« = 1,2. Let t € [0,7]. Using (4.11) and (4.8) we
obtain

él.p,
A" () = An?(t)llq < ellui(t) — w2 (t)llv + (;n;j " () = ()] x- (4.12)
On the other hand, since

t
u;(t) = uo +/ w;(s)ds
0
we have .
Jus () = ua®)lly < [ i (s) = () s
0
and, combining this inequality with (4.3), we find
t
[wi(t) —ue(t)|v < c /0 " (£) — n* () x ds. (4.13)

We use now (4.12) and (4.13) to obtain

A5 (®) - APl < [ I'(s) = n (o)l ds+ LB (1) — (1) x.
0 mpg
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The last inequality combined with the smallness assumption (3.26) allows
the use of Corollary 2.1 in [18]; as a result it follows that the operator A has
a unique fixed point, which concludes the proof. O

We have now all the ingredients to prove the Theorem 1.

Existence. Let m* = (n7,n5) € C([0,T]; X) be the fixed point of the
operator A, and let u,«, ¢, be the solutions of problems 73767%8” and Pf;ot,
respectively, for § = n*. It follows from (4.11) that w,~ = nJ, ¢,» =75 and
therefore (4.1), (4.2) and (4.7) imply that (w,~, ¢,~) is a solution of problem
Py. The regularity (3.27) follows from Lemmas 4.2 and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness
of the fixed point of the operator A, given by Lemma 3. a

5 Numerical approach

Discretized problem. Everywhere below we assume that (3.2)-(3.12) and
(3.26) hold. We now introduce a fully discrete scheme to approximate the
solution of Problem Py, provided by Theorem 1. First, we consider two
finite dimensional spaces V" C V and W" C W approximating the spaces
V and W, respectively, in which h > 0 denotes the spatial discretization
parameter. In the numerical simulations presented below, V" and W consist
of continuous and piecewise affine functions, that is,

V= {w" e [C@)]": w e [P(Tr)]'VTreT" w"=00onT1}, (5.1)
Wh={"eC@) : ¢ eP(Tr)vTreT", ¢"=0o0nT,}, (5.2)

where  is assumed to be a polygonal domain, 7" denotes a finite element
triangulation of Q, and Py(T'r) represents the space of polynomials of global
degree less or equal to one in T'r. In addition, we consider a uniform partition
of [0,T],0 =ty <t < ... <ty =T, that we use to discretize the time
derivatives and, everywhere in this section, we use the notation k for the
time step size, i.e. k = T/N. Finally, for a continuous function f(t) we
denote f,, = f(t,) and for a sequence {w,}\_, we use dw, = (wp, —w,_1)/k
for the divided differences.

Let ugk be an appropriate approximation of the initial condition wu.
Then using the backward Euler scheme, the fully discrete approximation of
Problem Py is the following.
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Problem P‘}}k. Find a discrete displacement field u™* = {uhk N —o C K"
and a discrete electric potential "F = { "IN Wh such that

(Ae(up®), e(w") — e(up?))q + (Be(uph),e(w") — e(uih))q
HEVERF e(w) —e(un)g + I (@t upt w") = J(o)F upt, dur)
> (f,,w" —u®)y Ywh eV foralln=1,... N,

(ﬂv@ﬁk,vlbh)m( (65‘( ) VZ/) ) Q)d +G( Uy, 790n ) h)
= (gn, V" )w V" e Wh, for all n = 0,...,N.

The existence of a unique solution to Problem P"}k can be obtained by
arguments similar to those presented in Section 4. The solution algorithm
in solving Problem P"}k combines the finite differences method (the back-
ward Euler difference method) with the linear iterations method (the Newton
method). Details on these methods can be find in the monograph [19] and,
therefore, we omit them. Nevertheless, we note that the numerical treatment
of the frictional contact term is based on the use of a penalization method for
the contact part and an augmented Lagrangean method for the non-smooth
friction part, see [19] and [2], respectively.

Numerical simulations. We now present numerical simulations in the
study of a real-world example of Problem P, the microelectromechanical
switches, see [15] for details. Microelectromechanical systems (MEMS) are
being recognized as enabling components to switch or tune radio frequency
(rf) components, modules or systems in manufacturing and operation. In
short, they are referred to as rf-MEMS. Most rf-MEMS involve the ma-
nipulation of air as the dielectric materials. Various designs of capacitive
rf-MEMS switches made out of nickel, aluminium, gold or zinc oxide have so
far been reported in literature, see for instance |1, 8]. The mechanical simu-
lation of switch consists in the following design concept: the switch design is
based on a suspended metal bridge (zinc oxyde in our example) which con-
nects two grounds of a coplanar wave-guide and crosses over a signal line on
which a dielectric foundation is deposited. When an external force is acting,
this action pulls the metal bridge down and contacts the dielectric, which
results in a low impedance between signal line and ground line for shunting
high-frequency signal transmission.

To describe this example, we consider an electro-viscoelastic body ex-
tended indefinitely in the direction X; of a cartesian coordinate system
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(O,X1,X5,X3). The material used is assumed to be a linearly isotropic
piezoceramic with hexagonal symmetry like zinc oxyde material (class 6mm
in the international classification [10]) which presents a viscous behavior. In
the crystallographic frame, the Xs-direction is a six-fold revolution symme-
try axis and the (X;0X3) and (X20X3) planes are mirrors. The electrical
and mechanical loads applied to the body are supposed to be constant along
the X7 direction. As a consequence, the fields E, D, € and o turn out to be
constant along X;. In addition, we suppose that €11 =0, €19 =0, €13 =0
and Dy = 0, i.e. we consider a plane problem. Under these assumptions, the
unknown of our electro-viscoelastic contact problem is the pair (u, ) where
the displacement field u = (ug, ug) belongs to the plane (O, Xa, X3).

Assume that the viscosity and elasticity operators are linear and denote
by a;jr and b;jp; their components, i.e. A = (ajjn) and B = (bjjx;). Then,
in the system (O, X3, X3), the constitutive equations (2.1) and (2.2) can be
written by using the following compressed matrix notation,

092 baa b2z 0O 0 €32 €92
033 baz b3z 0O 0 €33 €33
0923 == 0 0 b44 €24 0 2623 (5.3)
Dy 0 0 ey —f 0 —Ey
D3 ez2 e33O0 0 —f33 — L3
azge a3 0 0 0 €22
azs asz3 0 0 0 £33
+ 0 0 ag44 0 0 2é23
0 0 0O 0 O —Fy
0 0 0O 0 0 —F3
1 /0w 0Ou;
Here ¢;; = = Yi 9% ) and note that equation (5.3) is obtained by the
2 8m]~ &T,
identification
bao baz 0 azy asz 0
bijki = bpg = | bag b33 0O y Akl = Gpg = | a2z azz 0 ;
0 0 b44 0 0 a4q4,

with the rule
ijorkl=22 — porgqg=2,
ijorkl=33 — porq=3,
ijorkl=230r32 — porqg=4.
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This rule, which allows to describe the link between the fourth-order tensors
of components b;;r; and a5, and the corresponding second-order tensors of
components by, and a,g, respectively, is obtained by using the symmetries of
the various tensors involved in the constitutive law. In the same way, for the
third order piezoelectric tensor we have

00 . jk=22 — ¢=2,
eijkzeiq:< 24> with jk=33 — ¢=3,
ez e 0 jk=230r32 — q=4.

We use the material constants given in Tables 1 and 2, in which €,8.885 x
1071202 /Nm? represents the permittivity constant of the vacuum.

Elastic (GPa) Viscoelastic (GPa - s)

boo | baz | b33 | baa | @22 | @23 | as3 | aa
210 | 105 | 211 | 425 | 2.1 | 1.05 | 2.11 | 0.425

Table 1: Elastic and viscoelastic constants of the piezoelectric body.

Piezoelectric (C/m?) | Permittivity (C?/Nm?)

e32 | €33 €24 Ba2/ €0 B33/ €0
-0.61 | 1.14 | -0.59 -8.3 -8.8

Table 2: Electric constants of the piezoelectric body.

2]

19

NConductive foundation N

Figure 1: Physical setting of MEMS : an electroelastic body in contact with
a conductive obstacle.

As a two-dimensional example, we consider the physical setting depicted
in Figure 1, where Q = [0,12] x [0,2], Iy =T, = ({0} x [0,2])U ({12} x [0, 2]),
Iy =T, = ([0,12] x {2}) U ([0,2] x {0}) U ([10,12] x {0}), and the potential
contact surface is I's = [2,10] x {0}. The body is subjected to the action
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of surface pression fo = (0, —5)N/pm which acts on the top of the bridge,
i.e. on [0,12] x {2}; the body forces and electric charges vanish, i.e. f, =
ON/um?, qo = 0C/pum? and q, = 0C/um; and the gap between the body
and the foundation is g = 0.5um. The functions h, and p, (r = v, 7) in the
frictional contact conditions (2.9) and (2.10) are given by

Q if |s| > 128,
hr(S) = Cr X ‘S| .
L+ (o — 1) x 455 if [s] <128,
0 if s <0,
pr(s)=< s if0<s<m,,

n,. if s> n,,

where ¢, a, and n, are positive constants, a,. > 1. And, finally, for the
regularized electrical condition (2.11) we take

—me if 8 < —my, 0 if s<0,
he(s) =% s if —me<s<me, Pe(s) = ke X é if 0 <s<e,
Me if 8> me 1 if s > e,

where m., k. and ¢, are positive constants.

stick

slip + slip -

Figure 2: Sequence of deformed meshes and corresponding contact forces.

Our interest in this piezoelectric contact model is to study the influence
of the electric potential of the foundation on the process. Our results are
presented in Figures 2—6, in which we use the notation ¢g = —pg and k = k..
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In Figure 2 we plot a sequence of deformed meshes with the corresponding
contact interface forces and the contact status, obtained for four different
values of the electric potential of the foundation: ¢g = —¢g, where ¢ takes
successively the values 256, 64, 16 and 0. It results from the figure that
the deformations and the magnitude of the contact forces decrease when ¢
decreases, i.e. when the magnitude of the electric potential of the foundation
decreases.

According to Figure 3 we note that, for k given, the magnitude of the
normal electric displacement increases with ¢g. A similar behavior follows
from Figure 4 which shows that, for a given ¢g, the magnitude of the normal
electric displacement increases with the electrical conductivity coefficient k.
These results are compatible with the electrical boundary condition we use on
the contact surface and show the effect of the conductivity of the foundation
on the process.

.50 ||

-100 —

Dv

*® k=1
8 501|224 0s T
-150 e k=025
[ |** k=0125
o~ k=0.0625

75

=

=0.03125 —
— k=0.015625
=0.0078125
*® k=0

gsol— 11 qob—/—r———
0 2 4 6 8 10 12 0 2 4 6 8 10 12

X, axis X, axis

-200

=

Figure 3: Dependence of the nor-
mal electric displacement D-v with
respect to ¢q, for k = 1.

Figure 4: Dependence of the nor-
mal electric displacement D-v with
respect to k, for ¢ = 128.

Finally, Figure 5 shows the electric potential in the body whereas Figure
6 represents the electric displacement fields in the deformed configuration,
for four different values of the potential of the foundation, corresponding to
Po = 256, ¢g = 64, ¢g = 16 and ¢g = 0. According to Figures 5 and 6, we
note that the magnitude of the electric potential and the magnitude of the
electric displacement increase on the contact interface, when the magnitude
¢o of the potential of the foundation increases.

We conclude that our simulations above underline the effects of the elec-
trical conductivity of the foundation on the frictional contact process. Per-
forming these simulations we found that the numerical solution worked well
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Figure 6: Sequence of deformed meshes and corresponding electric displace-
ment fields.

and the convergence was rapid.
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Abstract
We study the behavior of solutions to the problem
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Consider the following Cauchy problem:

{ e (u(t) + Arue(t)) + ul(t) + Aous(t) = fo(t), t€(0,T),

UE(O) = UQe, U,E(O) = Uig, (PE)

where ¢ > 0 is a small parameter(e < 1), u,, fe : [0,T7) — H.

We will investigate the behavior of solutions u.(t) to the perturbed sys-
tem (P:) when ¢ — 0, upe — up and f. — f. We will establish a relationship
between solutions to the problem (P:) and the corresponding solutions to
the following unperturbed system:

{ V'(t) + Agu(t) = f(t), te€(0,T),

v(0) = uo. (F)

In our study we will use the following conditions:
(H1) The operator Ay : D(Ag) € H — H is self-adjoint and positive
defined, i.e. there exists wg > 0 such that

(Aou,u) > wo |u|2, Yu € D(Ap);

(H2) The operator Ay : D(A1) C H — H s self-adjoint, D(Ag) C
D(A1) and there exists wy > 0 such that

(Aru,u)| <wy (Aou,u), Yu € D(Ap).

If, in some topology, u.(t) tends to the corresponding solutions v(t) of the
unperturbed system (Fy) as e — 0, then the system (P) is called regularly
perturbed. In the opposite case system (Fp) is called singularly perturbed. In
the last case, a subset of [0, 00), in which the solution wu.(¢) has a singular
behavior relative to e, arises. This subset is called the boundary layer. The
function which defines the singular behavior of the solution u.(¢) within the
boundary layer is called the boundary layer function.

Many physical processes are described by systems of type (P.). For
example, the equation

pugt + v = o Av

(where p,~,o0 are the mass density per unit area of the membrane, the co-
efficient of viscosity of the medium, and the tension of the membrane, re-
spectively), which characterizes the vibration of a membrane in a viscous
medium, can be rewritten as

62utt + up = A’U,,



Singularly perturbed Cauchy problem 33

with e = (po)/2 /7.

In the case when the medium is highly viscous (v > 1), or the density p
is very small, we have ¢ — 0 and the formal ”limit” of this equation will be
the following first order equation

Ut = Au.

Let us mention some works dedicated to the study of singularly perturbed
Cauchy problems for differential equations of second order in Hilbert spaces.
In [2], [3], [4], [5], [7], [8], [9], the behaviour of the solutions u. to the abstract
linear Cauchy problem (P.) has been studied as € — 0 in the case when Ay
and A are positive operators, B = 0 or B is an linear integrodifferential
operator. All results from these papers were obtained using the theory of
semigroups of linear operators.

Our approach is based on two key points. The first one is the relationship
between the solutions of the problems (P:) and (FPy). The second key point
consists in obtaining a priori estimates for the solutions of the problems (P),
estimates which are uniform with respect to small parameter e.

2 Preliminaries

The goal of this section is to remind the notations and main assertions which
will be used in that follows.

Let k€ N*, 1 <p < 400, (a,b) C (—00,+00) and let X be the Banach
space. We denote by W¥P(a, b; X ) the Banach space of all vectorial distri-
butions u € D'(a,b; X), u) € LP(a,b; X), j =0,1,...,k, endowed with the

norm
1/p

k
ullwesry = | S 100
=0
for p € [1,00) and

HuHkaoo(a,b;X) = Orgfgxk ||’LL(]) HLOO(a,b;X)

for p = oo.
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In the particular case p = 2, we denote W*2(a,b; X) = H*(a,b; X). If
X is a Hilbert space, then H*(a,b; X) is also a Hilbert space with the inner
product

b
(s V) fr# (a b x) = zk:/ uld)( ))th-

J=

For each arbitrary but fixed s € R, k € N and p € [1,00], we define the
Banach space

Wf’p(a,b;H) ={f:(a,b) — H;f(l)(~)e_3t € LP(a,b;X),1=0,...,k},

with the norm

1l ey = 1€ Nwtn(a,pix) -

Theorem 1. Let p € [1,00] and X be a reflexive Banach space. Then the
embedding WHP(0, T; X) — C([0,T]; X) is continuous, i.e., there exists
C(T,p) > 0 such that, for each f € WP(0,T; X), we have

I leqorixy < CTp) ([ fllwreor; x)-

Theorem 2. Letk € N, p € [1,00] and let X be a Banach space. Then there
exists C(k, p,T) > 0 such that, for every f € WkP(0, T; X), there exists an
extension f € W P(0,00; X) of f satisfying

||f||kap(0,oo;X) < C(kvva) ||f||kaP(O,T;X)‘

Theorem 3. Let X be a reflexive Banach space. Let f:(0,T) — X and let
fu(t) =h=H(f(t+h) = f(t), t,t+h e (0,T).

(i) If 1 < p < +oo and for each (a.b) C (0,T) f € WhP(a,b; X), then
1fnllze(a:x) < Iflwre(apx), 0 < |h| <min{a/2, (T - b)/2}.
(i) If 1 < p < 400, f € LP(a,b; X) and there exists C > 0 such that
I fnll o apx) < €, 0 < |h| < min{a/2, (T — b)/2},
then f € WHP(a,b; X) and

HfHlep(a,b;X) <C.
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Theorem 4. Let H be a real Hilbert space, and let A : D(A) C H — H
be a linear self-adjoint positive operator. If w € W2(0,T; H) such that
u(t) € D(A) a.e. fort € [a,b] C [0,T] and Au € L*(0,T;H), then the
function t — (Au(t),u(t)) is absolutely continuous on [a,b] and

%(Au(t),u(t)) = 2(Au(t),u'(t)), a.e. te€[a,bl.

Definition 1. The operator A : D(A) C H — H is called monotone if
(Au1 — AuQ,ul — UQ) > 0, Vul,uQ € D(A)

The operator A is called mazimal monotone if it is monotone and A does
not have (possible multivalued) monotone extensions in H.

Theorem 5. [1] Let A: D(A) C H — H be a monotone operator in H. A
is mazximal monotone if and only if for every X > 0 (equivalently for some

A>0), R(I+\A) =H.

Theorem 6. [1] The linear monotone operator A : D(A) C H — H is
maximal monotone if and only if A is closed and (A*u,u) > 0, Yu € D(A*),
where A* is the adjoint operator to A.

For a maximal monotone operator A : D(A) C H — H and A > 0, we
denote by .J its resolvent Jy = (I +AA)~!, and by Ay = A~1(I — J)) the
Yosida approximation.

Theorem 7. Let A: D(A) C H — H be maximal monotone operator. Then
for every A > 0:

(2) Jx is lipschitzian on H with the constant 1;
(1) Az = Adyx, Ve e H and Az = J\Az, Vz e D(A);

(1i1) Ay is a monotone and lipschitzian operator on H with the constant
)\—1 :

() |Axz| < |Az|, Vz € D(A);
(v) limyx_oAxz = Az, Vz € D(A);
(vi) |Axz|? < (Ax, Ayz), Vz € D(A).
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Definition 2. The function v : [a,b] — H is called strong solution to the
Cauchy problem

{ u'(t) + Au(t) = f(t), t€ (a,b), (2.1)

u(a) = ug

if u is absolutely continuous on [a,b], v’ € L'(a,b; H), u(t) € D(A) a.e. for
t € (a,b), u(t) satisfies the first equality in (2.1) a.e. for ¢ € (0,7) and
u(a) = ug.

Theorem 8. [1] Let A : D(A) C H — H such that A + wl is mazimal
monotone. If ug € D(A) and f € WHL(0,T; H) then there exists a unique
strong solution u € W1°°(0,T; H) to the problem

{ ' (t) + Au(t) = f(t), te(0,T),
u(0) = ug

and

lu(t)| + (/Ot 7 09) (A4 wlyu(s), u(s)) ds) 1/2
< ewt/2 <|U0\ +/Ot e ws/2 f(8)|d8) , Vtelo,T],

d+ d,
0] < e 170 - ul+ [ e |

Lemma 1. [10] Let v € L'(a,b) (—o0 < a < b < 00) with 1 > 0 a.e. on
(a,b) and c be a fixed real constant. If h € Cla,b] verifies

t

w(t—s) ds, Ytel0,T).

t
%hZ(t) < ;CQ—{—/G D(s)h(s)ds, Vit € [a,b)],

then .
h(t)g]c\—i—/ W(s)ds, Vit € [a,0)].

3 Existence of strong solutions to both (P.) and
(Fo)

In this section we will study the solvability of problems (P:) and (F) and
also the regularity of their solutions.
The following two theorems were inspired by [1].
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Theorem 9. Let T > 0 and let us assume that Agy satisfies the condition
(H1). If ug € D(Ag) and f € WHL(0,T; H), then there evists a unique
strong solution v € W°°(0,T; H) to the problem (Py). Moreover, v satisfies

h@n+(4tpyagﬂdﬁuzgmd+lﬂﬂ@M& vt € [0,7]

VO] < Ao = FO)+ [ 7@ ds. e T

Theorem 10. Let T > 0. Let us assume that A : D(A) C H — H s linear
self-adjoint and positive. If ug € D(A), u1 € H and f € WHL(0,T; H), then
there exists a unique function u : [0,T] — H such that:
we W20, T;H), AY?ueWbHe(0,T;H), Auec L>(0,T;H),
AY2y and ' are differentiable from to the right in H for every t € [0,7")
and

dt du du
(O O+ Aut) = £(1), e [0.T), (3.1)
uw(0) = ug, '(0) = uy. (3.2)

In what follows this function will be called the strong solution to the
problem (3.1), (3.2).

Proof. Let us denote by H = D(AY?) x H which, endowed with the inner
product

(U1, Ua)y = (AY?uy, AV2ug) + (vi,02), Ui = (ugsvi) € H, i=1,2,

is the real Hilbert space. Let us further denote by £ : D(L£) C H — H, the
operator defined by

D(L)=D(A) x H, LU= (-v,Au+v), VU= (u;v)e D(L).
As
(LU, U)y = —(Av,u) + (Au+v,0) = [v[* >0, VYU € D(L),

it follows that £ is monotone. Now we are going to show that it is maximal
monotone. To this aim, let us consider the equation (A +L£) U = F, A > 0,
where F' = (f,g) € H and U = (u,v) € D(L), which is equivalent to the

System
A —v=f
w4+ Aut+v =g,
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1.e.

Au—v=f
{ AA+ Du+ Au = g1, (3.3)

where g1 =g+ (A + 1) .

As A is a positive self-adjoint operator, therefore using Theorem 6, we
can infer that A is a maximal monotone operator. Due to Theorem 5, we
have that

V>0 D((BI+A)~Y)=H, R((BI+A")CDA.

Therefore (3.3) is equivalent to the system

Au—v=f
{ u=(BI+A) g, (3:4)

with 3 = A(A 4 1). Hence, if f € D(AY?) and g € H, it follows that
u = (BI + A)"tg; € D(A). From the first equation in (3.4), we deduce
that v = \u — f € D(AY2). So, for every F' € H there exists a unique
solution U € D(L) to the equation (Al + £) U = F. So, RIA[ + L) = H
and, by Theorem 5, the operator £ is maximal monotone. By Theorem 8§,
the problem
U't)+ LU(t) = F(t), te(0,7),
{ U(0) = U, F0)
v(

where U(t) = (u(t); v(t)), Up = (uo, uw1), F(t) = (0, f(t)) has a unique
strong solution U = (u,v) € W*°(0,T;H) which implies that A'/?u,v €
Whee(0,T; H). As the equation in (P.U) is equivalent to the system

it follows that w satisfies (3.1) and (3.2). Thus, (3.1), (3.2) has a unique
strong solution u € W2*°(0,T; H).

Finally, we have A'/24 € Wh°(0,T; H) and Au € L>°(0,T; H) and this
completes the proof. ]



Singularly perturbed Cauchy problem 39

4 A priori estimates for solutions to the
problem (F:)

The goal of this section is to establish some a priori estimations for solutions
to (P:) which are uniform relative to the small parameter e.
Consider the following problem:

{ e (u(t) + Aue(t)) + ul(t) + Aoue(t) = f(t), t€(0,7),

us(0) = up, ul(0) =ui. (4.1)

Lemma 2. Let T' > 0. Suppose that, for each € € (0,1), the operator
A(e) = (A1 4+ Ag) : D (A(e)) € H — H is self-adjoint and satisfies

(A(e)u,u) > wlul®, Yue D(AE), w>0, ee(0,1]. (4.2)

If f e WHY0,T; H),ug € D (A(¢)), u1 € H, then the unique strong solution,
Ue, of the problem (4.1) satisfies

142 @)oo, i + Illze, m < C@W)ME®,  (43)

for each t € [0,T] and each € (0,1/2]. If, in addition, u € D (AY?(e)),
then
oo, o 11y + A2 () ulll 20,111y < Clw) Mi(t), (4.4)

for each t € [0,T], and each € € (0,1], and
|A(e)ucll oo 0,4, 1) < Clw)Mi(t), Vte[0,T], Vee(0,1], (4.5)
where

M{(t) = Mt uo,ur, f) = |AY3(e)uo| + [ur] + 1w o1 + 1 £ (O,

M(t) = Mi(tuo. . £) = [AY2 (e + [ Aol + [ Flwra oy + O]
Proof. We begin with the proof of (4.3). Let us denote by

E(u,t) =¢ (u’(t),u(t)) —i—/o (A(e)u(r),u(r)) dr + % \u(t)|2
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+£/0 |u'(7’)‘2 dr + €2 ‘u’(t){2 + e (A(e)u(t),u(t)) .

For every solution, u., of (4.1), by direct computation, we obtain

%E(ua,t) = (f(t),uc(t) + 2cul(t)), ae. te(0,7T).

As
E(ue,t) >0, |ua(t) + 2eul(t)] < 2 (E(ue,t)"?,

for each t € [0,T], and each ¢ € (0, 1], it follows that

%E(us,t)§2|f(t)| (B(us, t)Y?, ae. Vte (0,T).

Integrating the last inequality, we obtain

%E(ug,t)g E(uE,O)—i—/ () (Blue, 7)Y dr, W€ [0,T].
0

DN | =

Applying Lemma 1 to the last inequality, we get

t
(E(uc, t))"/* < (B(u.,0))"/? +/ |f(T)] dr, Vtel0,T],
0
from which we deduce

uell (o, g; i) + IIAY2(2) ell 20,1 11y < Cw)M(2), (4.6)

for each t € [0,7] and each Ve € (0, 1]. Let now

E(u,t) = elu/ (t)|* + |u(t)|* + (A(e)u(t), u(t)) + 2(1 — E)/O |u'(s)|2ds

12¢ (u(t), o/ (8)) + 2 /0 (A(e)u(s), u(s)) ds.

Then, for every strong solution u. to the problem (4.1), we have

%S(ue,t) =2 (f(t),uc(t) +ul(t)), ae te(0,T),
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and thus
E(ue,t) = E(ue, 0) + 2 (ue, f(t)) — 2 (uo, f(0))
t
+2 / (f(s) = f'(s),ue(s))ds, Vte[0,T). (4.7)
0

Since

E(ue,0) < Clw) M?(t), Vte0,T], Vee (0,1]
and, in view of (4.6), we have
2|(ue, £(£)) = (uo, f(0))] < Clw) M?(t), Vte[0,T], Vee(0,1],
from (4.7), we get
E(ue,t) < C(w) M?(t), te[0,t], Vee(0,1],

which implies (4.3).

Proof of (4.4). Let h > 0 such that t,¢ + h € [0,T]. Denote by ucy(t) =
ue(t 4+ h) — us(t), where u. is the strong solution to problem (4.1). Then for
uzp, we have the equality

%E(uah,t) = (fu(t), ucn(t) + 2euly,(t)) ae. € (0,T —h).

Integrating this equality and applying Lemma 1 and Theorem 3, we obtain
¢
(B(uen, ))'? < (E(uen, 0)'/? +/ |f/(7)] dr, Vte[0,T - h].
0

As 4/(0) = uy and

time [, (0)] = 1(0) = w1 = A£)ual.

9

: —1 | 41/2 — | A1/2
lim ‘A (s)ugh(O)’—‘A (€)ur

dividing the last equality by h and passing to the limit as h — 0, we get
(4.4).

Proof of (4.5). Let Ay(e) be the Yosida approximation of the operator
A(e). Let

Ey(u,t) = e (Ax(e)u/(t), /(1)) + (Ax(e)u(t), u(t))
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+ (Ax(e)u(t), A(e)u(t)) + 2¢ (A,\(a)u(t), u'(t))
+o(1— o) /0 (An(e)(s), 0/ (s)) ds +2 / (Ax(2)u(r), A(2)u(s)) ds.

0

Then every strong solution, u, of the problem (4.1) satisfies

%El(ug t) =2 (f(t), Auc(t) + Ayul(t)), ae. te(0,T).

Integrating this equality, we obtain
Ey(ue,t) = Eq(ue, 0) + I (t,e) + Ia2(t,e), Vte[0,T], (4.8)

where

It,2) = 2(£(1), A(e)ue(t)) — 2 (F(0), Ax(E)uo).
)=2 [ (76) = ) AN (s) .

Let us evaluate I (t,¢), Is(t,e). Using (iv), (vi) in Theorem 7, we get

Ig(t, 9

11(6,0)] < 5 1 AEue(OF +21£(@)F + | fOF + | Ax(E)uol?

< 3 (AN©ue(t), Alhua(t) + C) ME(H), Vi€ [0,T].  (49)
As (Ax(e)u,u) > 0, Yu € H, it follows that
(Ax(e)u,v)* < (Ax(e)u,u) (Ax(e)v,v), Vu,v € H.
Therefore, due to (vi) in Theorem 7, we get
 (AN(EDL(0), L)) + (An(2)ua (1), e 8)) + (Ax(2)uue (), A(e)ue (1)

2z (Ax()ue(t). (1)) = (1 2) (Ax(2)us(t). ue(1))
e (An (1) + b (0), (uelt) + (1)) + (Ax()ue(t), Ae)us (1)
> (Ar©uelt), Aus(t) 2 [Ar(Eu(OF, Ve € (0,11

Ei(ue,t) >0, |Ax(e)ue| < B *(ue,t), Vte[0,T], Vee (0,1],
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we have
muﬁ)gzﬁ(u(n+f<m EV2(u.,s)ds, Vte[0,T].  (4.10)
Due to (vi) in Theorem 7, we get
Bi(ue,0) < Cw) (JAE)uof + 42w [?), vee (0,1).  (411)

Using (4.9), (4.10) and (4.11), from (4.8), we obtain
Ex(ue,t) < C(w) Mi(t)

2 [ (71 + 1 6) B (s ds, (112)
0

for all t € [0,7] and all £ € (0,1].
Applying Lemma 1 to (4.12), we deduce

B (ue,t) < C(w) My(t), Vtel[0,T), Vee (0,1],
from which it follows that
(Ax(e)us(t), A(e)us(t)) < C(w) M2(H)Y t€[0,T], Ve € (0,1].

Finally, passing to the limit in the last inequality as A — 0 and using (v) in
Theorem 7, we get (4.5) and this completes the proof. O

Let u. be a strong solution of the problem (4.1) and let us denote by
ze(t) = ul(t) + ae” 5, o= f(0) — uy — A(e)uo. (4.13)

Lemma 3. Let T > 0 and let us assume that, for each e € (0, 1), the operator
A(e) = Ay + Ag is self-adjoint and satisfies (4.2). If uy, f(0) — A(e)ug €
D (A(g)) and f € W?Y0,T; H), then there exist C(w) > 0, such that the
function z., defined by (4.13), satisfies

1/ 12
1472 zelleqo, 5 + Natlleqo, s + A2 o

< C(w) My(t), Vtel[0,T], Vee(0,1], (4.14)

Ma(t) = |A(e) f(0) — A*(€)uo| + || fllw= 0,1y + [A()ua] + [ f/(0)].
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Proof. 1f u1, f(0) — A(e)ug € D (A(e)) and f € W21(0,T; H), then, due to

Theorem 10, z. is the strong solution of the problem

{ ezl (t) + zL(t) + A(e)z:(t) = F(t,e), ae. te(0,7),
2(0) = f(0) — A(e)uo, 2(0) =0,

where

Flt,e) = f'(t) + e Ale)a
Finally, let us observe that z. satisfies AY/2(e)z. € Wh(0,T; H), =
W22°(0,T; H) and A(g)z. € L*°(0,T; H). Therefore, (4.14) follows from
Lemma 2 and the proof is complete. O

5 The relationship between the solution of (F.) and
(Fo)

Now we are going to establish the relationship between the solution to the
problem (P.) and the corresponding solution to the problem (Fy). This
relationship was inspired by [6]. To this end, we begin by defining the
transformation kernel which realizes this relationship.

Namely, for € > 0, let us denote

K(t,r,e) =

(K1(t,m,e) + 3Ka(t,1,e) — 2K3(t, 7,¢)) ,

375—27'} <2t—7'>
de 20/et )’

3t 4 67 2t+ 1
Ks(t,1,e) = exp " oVt )
-

1
2e/m

where

Ki(t,7,e) = exp

K3(t7 T, 6) - exp

t+r) ):/ .

The properties of the kernel K (t, ,€) are collected in the next lemma.
Lemma 4. [11]. The function K(t,,€) has the following properties:
(i) K € C([0,50) x [0,00)) N C((0,00) x (0,00)) ;

(ii) Ki(t,1,e) =K r(t,1,6) — K- (t,7,¢), Vt>0,Y7 >0;
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(i7i) eK(t,0,e) — K(t,0,6) =0, Vt>0;
1 T
(iv) K(0,T,¢) 5z exp { 25} , Vr>0;

(v) For every t > 0 and every q,s € N, there exist C1(q, s,t,e) > 0 and
Ca(q, s,t) > 0 such that

|0;03K (t,7,¢)| < Ci(q,s,t,e) exp{—Ca(q, s, t)T/c}, V1T >0;

Moreover, for every v € R, there exist C1 > 0, Cy > 0 and g9 > 0,
depending on vy, such that:

(o)
/ e’ | K(t, T, e)| dT < C4 e et VWt>0, Vee (0, 0],
0
oo
/ T K,(t,T,e)| dr < Cre e WE>0, Vee (0,e),
0
o
/ VT Ky (t,1,e)| dr < Cre? e“t >0, Vee (0,0 ;
0

(vi) K(t,7,e) >0, Vt>0, VY72>0;

(vit) For every continuous ¢ : [0,00) — H, with |o(t)] < Mexp{yt}, we

have:
/ K(t,r,e)p )dT—/ e To(2eT)dr
0

for every e € ((), (2 7)*1) :

lim

= O7
t—0

H
(viid)
/ K(t,r,e)dr =1, Vt>0.
0

(ixz) For every vy >0 and q € [0, 1], there exist C1 > 0, Co > 0 and g9 > 0,
depending on v and on q, such that :

/ K(t,7,e) |t —r|%dr < C1e“? 2 Wt >0, Ve e (0,20
0
If v <0 and q € [0, 1], then

/ K(t,r,) e |t —7]9dr < Ce9/? (1+\/Z)q, Vi >0, Ve € (0,1];
0
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(z) Letp e (1,00 and f: [0, 00) — H, f € WiP(0,00; H). If v >0, then
there exist C1 > 0, Co > 0 and g9 depending on v and p, such that

Hf(t) - /Ooo K(t,r, ) f(r)dr

< O et? ‘|fIHLT§(O,oo;H) gD/ i >0, Ve e (0,e).

If v <0, then
Hf(t) —/ K(t,r,e)f(r)dr
0

p—1
< Cv,p) 1 'l 2 (0,001 (1 + \/E> 72w >0, Ve € (0,1].

(xi) For every g >0 and « > 0, there exists C(q,a) > 0 such that
t 00
/ / K(r,0,e)e"1%% |7 —0|*df dr < C(q,a) T,

for each t > 0, and each € > 0.

Now we are ready to establish the relationship between the solution of
(P-) and the solution of (Fy).

Theorem 11. Suppose that A(e) satisfies (H1). Let f € L°(0,00; H) and
let ue € W2(0,00;H) be the strong solution of the problem (4.1), with
Au. € L2(0,00; H), for some ¢ > 0. Then the function we, defined by

o0
- [T Ko ar
0
is the strong solution of the problem

{ zégg))—i;xi(j)ws(t) = Fy(t,e), t>0, (5.1)

where

b /oo e Tus(2e7)dr,  Folt,e) = folt,e)ur + /°° K(t,7,e) f(r)dr,
0 0

-l ()]
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Proof. Integrating by parts and using (7),(#¢) and (¢i7) in Lemma 4, we get

(wi(t),n) = </Ooo Ki(t,7,¢e)uc(7)dr, 77)

_ ( /0 Ko (67 ) — K (b7 2)] e (r)dr, 77)

= — ([eK;(t,0,e) — K(t,0,¢)] us(0),n) + (eK(t,0,&)us,n)

+ (/OOO K(t, 7€) (eul (1) +ul(7)) dr, 77)
= ett0. )+ ([ K@) 16 - A (e dron)
- <5K(t,0,5)u1 +/OOO K(t,7,e) f(r)dr, ?7) — (A(e)we(t),n)

= (ftteru+ [T K fr)drnn) - (A0,
for each n € D(A(g)). Thus
(w(t) + Aw.(t) — Fo(t,e),n) =0, Vne D(A(€)), a.e. t>0.

Let us observe that Fy(t,e) € L (0,00; H) and from (v) in Lemma 4,
we conclude that w. € L2 (0,00; H) (with some ¢; > 0), which implies that
A(e)we € Lg(0,00; H). Since D(A) = H, it follows that w,(t) satisfies the
first equation in (5.1) a.e. t > 0.

As the initial condition is a simple consequence of (iv) and (vii) in Lemma

4, the proof is complete. O

6 The limit of the solutions of the problem (P.) as
e—0

In this section we will study the behavior of solutions to the problem (Px)
as € — 0.
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Theorem 12. Let T > 0 and p € (1,00]. Let us assume that the operators
Ao and A; satisfy (H1) and (H2). If

Ug, Uge € D(Ao), Ule € H, f, fa € Wl’p(O,T; H),

then there exist g = eo(wo,w1) € (0,1) and C = C(T,p,wo,w1) > 0 such
that

e — U||C([0,T];H)
<C (M5€6+\U05*U0|+ ||fs*f||Lp(o7T;H)) ) (6.1)

for all e € (0,e0], where ue and v are the strong solutions of problems (P:)
and (Py) respectively,

B =min{l/4,(p—1)/2p}

and
ME = ‘Aémw) €

+ [ure| + ([ fellwrro,r;m)-

If, in addition, u1. € D (A(l)/Q), then, for each ¢ € (0,e¢], we have

Jue — U”C([O,T};H)

<C (Mlge(pflwp + |uge — uol + || fe — fHLP(O,T;H)) ; (6.2)

and 1/2 1/2
146 *ue — Ay *vl| 20, 7 )

<C (Mls e’ + |uge — uo| + || f- — f||Lp(o7T;H)) ) (6.3)
where = min{1/4, (p — 1)/2p} and

M. = ‘Aé/2u1£

+ [Aouoe| + [Arvoe| + || fellwrw(o, 7y 1)

Proof. From (H1) and (H2), it follows that there exists v = 3w; > 0 such
that
[(Ar o)) < [((Ar + w1 AoJu,v)]| +wn |Ag*ul |45 0]

< (A1 + w1 Ag)u, u)? (A1 + w1 Ag), )V + wy |AY *u) |AY 0|
< 2wy (Agu, w)Y? (2wy (Agv, v))Y/?
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+wi ‘A(l)/Qu’ ’Aémv‘ <% ‘A(l)/2u’ ‘Aéﬁv )

YVu,v € D(Ap). (6.4)

If f. € WhP(0,T; H) with p € (1,00] and [ € N*, then, due to Theorems
1 and 2, we have that f. € C([0,T]; H) and there exists an extension f, €
WP (0, 00; H) such that

||fa”0([0,oo);H) + HszWlm(o,oo;H) < C(T,p, D) I fellwrro,r;m)- (6.5)
Let us denote by 4. the unique strong solution to the problem (P.) and by
¥ the unique strong solution to the problem (FP), defined on (0, c0) instead

of (0,7, and f. by f-. From Theorem 10, we have

Gle € W22(0,T; H), AY?(e)i. € W-(0,T; H),
A(e)t. € L>®(0,T; H), VT € (0,00).

From Lemma 2 and (6.4), it follows that

{ G € W2(0, 00 H), AY?a. € W2(0, 00; H),

A(e)te € L*°(0,00; H).
Moreover, due to the same lemma and to (6.4) and (6.5), we get
145 e lleqio, 1) + 1Ll 20,11) < € Me, ¥ >0, Ve € (0,20)- (6.6)
. L 1/2
If in addition, ui. € D (AO ), then

17 oo, 1y + 114> Tl 20,6 1) < C M, (6.7)

for all ¢ € [0, 7] and all £ € (0, £g].
Proof of (6.1). According to Theorem 4, the function

(o.9]
We (t) = / K(ta T, E) 2~/JE (T) dTa
0
is the strong solution to the problem

{ wl(t) + A(e)we(t) = F(t,e), t>0, in H,
we(0) = wo,
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for 0 < e < g, where

F(t,e) = fo(t,e) u16+/ooo K(t,7e) fo(7)dr,

e = o e (I (1) - (347

o0
woz/ e T (2eT)dr.
0

Using Hélder’s inequality, (vi), (viii), (iz) (z) in Lemma 4, and (6.6), we
obtain

e (t) — we(t)l| g =

au(t) — /0 T Kt ) i (r) dr

H

</ " Kt e) () — ae(r)l  dr
\ [l ds

< 111 2(0, 000 1) /0 K(t,,e) |t — 7|2 dr < C M. eV,

< / K(t,1,¢) dr
0

for all t € [0, 7] and all € € (0, eg]. It then follows
liie — welleo, 7 1y < C Mee'/*, Ve € (0,e). (6.8)

Let us denote by R(t,e) = 0(t) —w.(t) which clearly is the strong solution
of the problem

R'(t,e) + AgR(t,e) = e Aywe(t) + F(t,e), t>0, (6.9)
R(0,¢) = R, '
where Ry = ug — wp and
F(t,e) = f(t) - /000 K(t,T, 5)]’1(7‘) dr — fo(t,e) uye. (6.10)

Taking the inner product by R in the equation in (6.9) and then integrating,
we obtain

ds

t 2
]R(t,a)\2+2/0 |4/ R(s, )
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:|Ro\2+2/0 F(s,2)| |R(s.5)| ds+2s/0 (Ayw.(s), R(s,€)) ds,

for all ¢ > 0. Using (6.4), from the last equality, we get

¢ 2
RetP+ [ M#ﬁaa@)dsgu%ﬁ

+2/ IF(s,€)| |R(s,€)| ds +~2e / ‘A Puw.(s)| ds, (6.11)

for all ¢ > 0. Applying Lemma 1 to (6.11), we obtain

t 1/9 2 1/2
R(t,2)] + (/ A2 R(s.c)| ds> < |Ro|
0

t t e 9 1/2
—I-/ | F(s,e)| ds+ e (/ ‘AO/ we(s)’ ds> , Vt > 0. (6.12)
0 0

From (6.6), we deduce

o0
|Ro| < |upe — o] —i—/ e % lus(2es) — uge| ds < |uge — uol
0

e 2es
+/ e_s/ ‘ﬂ;(T)‘ drds < |ugs — ug| + C M. '/, (6.13)
0 0

for all € € (0,¢0]. Using () in Lemma 4 and (6.5), we get

' ) — /0 K(t, 7€) J.(r) dr
<[ -Fo|+ [ Ko

+C(T,p) 12 | oo, 7 11y €772, Wt > 0, Ve € (0, ). (6.14)

folt) = £()] dr < |Fe) = Foto)|

As e"A\(y/7) < C for all T > 0, we have

! 37 T é —7/4 o —7/4
expy — ¢ A —)dr <Ce e dr < Ce e dr < Ce
0 4e € 0 0
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and

for all t > 0. Hence

t
/ fo(r,e)druic| < Celure|, Vt>0. (6.15)
0

Using (6.10), from (6.14) and (6.15), we get

t
| 1Feal a0 (M0 1~ florn) . (610

for every t € [0,T] and every € € (0, £].
As A(l)/ s closed, using (6.6), we obtain

A5 2w.(0) / K(t,7e) |4y a(r)| dr < C M., (6.17)

for every t € [0,T] and every € € (0, g¢].
Thanks to (6.13), (6.16) and (6.17), from (6.12), it follows that

1/2
IRl cqo, 1) ) + HAO R‘ L2(0.7: H)
<O (M D20t ug ol + 1S = o) (619)

for every e € (0,&p]. Finally, from (6.8) and (6.18), it follows that
[de — olloqo,ry:m) < N1Ee — welleo,r;my + 1 Rlleor:m)

C (Mee? + fuoe = wol + 1Sz = flnorzian) ) (6.19)

for every € € (0,e0]. According to Theorems 9 and 10, we have that u.(t) =
te(t) and v(t) = v(t) for t € [0,T]. Therefore, from (6.19), we deduce (6.1).

Proof of (6.2). If u;. € D (Al/Q) then, using (vi), (viii), (x) in Lemma
4 and (6.7), we get

e (t) — we(t)[| g =

_ /0 T Kt 7o) e (r) dr

H
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< /0 T Kt ) Jiet) — ()l dr

§/ K(t,T,¢) dr
0

/ ()1 ds
t

<o [ Keme)lt=rldr <0 Mye
for every t € [0,T] and every ¢ € (0,g¢]. This yields
|te — wellc(o, 17, 1) < CM.e? Vee(0,e).
As, for p € (1,00], we have (p — 1)/2p < 1/2, the proof of (6.2) follows in

the same way as the proof of (6.1).
Proof of (6.3). Using (vi), (viii), (x) in Lemma 4 and (6.7), we get

‘Agﬂ(ag(t) —ws(t)) < /Ooo K(t,7,¢) ‘Aé/z(ag(t) fag(f)‘ dr

[

o0
< / K(t,7¢) [t — 7[V/2
0

g/ K(t,T,¢) dr
0

‘Aé/Qﬂ'E(s)HH ds

[

<OMy.eVt, vt>0, Vee (0, go]-

1/2

2
‘Aéﬂﬂ;(s) HH ds| dr

Hence u.(t) = u.(t), for ¢t € [0,T], and therefore

HAé/Q (e — we) < CMyce' Ve € (0,g). (6.20)

([0, T]; H)

From (6.18), it follows that

45"

<C (Ms c(p=1)/2p
L2(0,T);H)

+|uwoe —uol + C | fe = fll oo, )v Ve € (0,&0]. (6.21)

Finally, (6.20) and (6.21) imply (6.3) and this completes the proof. O
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Remark 6.1. If, in the conditions of Theorem 12, we assume that f, f. €
Whe(0,T, H), then (6.1), (6.2) and (6.3) take the form

||u5 — UHC([O,T];H) <C (Ms 51/4 + |u0€ - U()| + HfE - fHLOO(O,T;H)) ’

where

ME = ‘A(IJ/QU(]E

+ lure| + [ fellwroo (0,705

H’U,E — UHC([O,T];H) <C <M1551/2 + ’U()e - uO’ + Hfa - fHLOO(O,T;H)) )

and 1/2 1/2
146 *ue — Ay *vl| 20, 7 )

<C (/\/hs eV uge — uo| + | — fHLOO(O,T;H)) ;

with
Mie = ’A(l)/Qul 2

+ [Aguoc| + [Aruoc] + || fllw.oc o, 7; 1)-
for all € € (0, ).

Theorem 13. Let T > 0 and p € (1,00]. Suppose that the operators Ay and
Ay satisfy (H1) and (H2). If

U0, Uoe, Aguo, A1uos, AoUoe, Uie, f(0), f=(0) € D(Aop)

and

fife € W?P(0,T; H),

then there exist eg = eo(wo,w1) € (0,1) and C = C(T,p,wp,w1) > 0 such
that

HAé/2 <u/E —v' +a, e‘ﬁ)‘

/ ’ —
U, —V + g€ ¢

< (r=1)/2p 1 p 22
c((0,7); H) C<M255 * ) (6.22)

oz =€ (Mzgé’g + Da> . (6.23)

where v and us are the strong solutions of the problems (Py) and (P:) re-
spectively, # = min{1/4, (p — 1)/2p}, a: = f(0) — w1 — A(e)uoe,

D:=|f: - fHWLp(o,T;H) + [Ao(uoe — uo)l

My, = |A(E)u15| + ”f€||W27p(07T; H) + |A1UO€’ + |A(5)O‘€| .
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Proof. Within this proof, for u., v, f and fs, we will use the same notations
as in the proof of Theorem 12.
Let us denote by

5(8) = 0l(t) + ace s, ae = £-(0) — ure — A(e)uge.

If uje + e € D(Ag) and f € WH(0,T; H), then, due to (6.4) and (6.5),
u1e +a: € D(A(e)) and f € W2L(0,00; H). According to Theorem 10, .
is the strong solution in H to the problem

{ g3 (t) 4+ Z.(t) + A(e)2.(t) = F(t,e), t>0,
2(0) = f=(0) — A(e)uge,  2(0) =0,

where

F(t,e) = f/(t) + eV A(e)ae

From Lemma 3 and (6.4), it follows that
€ W2(0,00; H), AY?2. € WH2(0,00; H), A(e)z. € L®(0, 00; H).
Moreover, from the same lemma, (6.4) and (6.5), we get
146" Zell oo, sefs 1) + I1ZE N0, 00): )

+ HA1/2 5! < C My., Ve e (0,e). (6.24)

L2(0,00; H)

According to Theorem 4, the function

oo
o) = [ Kt
0
is a strong solution of

{ wy (1) + Al)wie(t) = Fi(t,e), t>0,
w1(0) = [{¥ e TZ(2e T)dr,

where
Fi(t,e) :/0 K(t,T,¢) (fé(T) +e = A(s)ag) dr.

Moreover,

\Ag/zwle / K(t,7e) )AO 57 ‘dTSCMQg, (6.25)
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for all ¢ > 0. Using (vi), (viii), (x) in Lemma 4 and (6.24), we get

[2e(t) —wi1e(t)|y =

Ze(t / K(t,T,e) z.(T)dr

H

gAwKquwa@—dwadf

< / K(t,re)
0

< ||2;||C’([O,oo),H) /0 K(t’Ta 5) |t - T| dr < C M. 51/27

dr

s)||m ds

for all t € [0, 7] and all € € (0, &],

|45 t) —wi)|,

H A2z / K(t,7,¢) A5 () dr

g/ K(t,7,¢) HAS)/? (zs(t)—gg(T))H dr
0

S/mKwﬂ@/ﬁmﬁa@me

< AL 21220, 00: 1) / K(t,7,e)|t — 7|"?dr < C My Y4,

dr

for all t € [0, 7] and all € € (0,¢¢]. It then follows that

12 — wiclloqo, 1. ) < C Mace’?, Ve € (0,2, (6.26)

HAé/Q (% —wie) < C My, Ve e (0,e). (6.27)

L2(0,T; H)

Let Ry (t,e) = ¥/ (t)—wie(t). If f(0)—Agug € D(Ag) and f € W21(0,T; H),
then, according to Theorem 3.1, & € W2°°(0, 00; H), A(l)/Q’D € Wh2(0, 00; H).

Therefore R; € W (0, 00; H) and

{ Ri(t,e) + AgRi(t,e) = f/(t) — Fi(t,e) + cAjwi(t), t>0,
Rl(O, 8) = f(O) — Aouo — le(O).
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Similarly to (6.12), we deduce

t 1/2 2 1/2
meal+ ([ | meaf @) <imoo)
0

t
+

i F(s) —]-'1(5,5)‘ ds+ e </Ot ‘Aé/zwls(s)r ds)l/Q, (6.28)
for all t > 0. Using (6.24), we get:
[R1(0, )] < [£(0) = f2(0)] + [Ao(uo — woe)| + € [Aruoe]

+/Ooo e %|Z:(2es) — 2:(0)| ds

<CD:+e|Aupe| + Mace <CD.+ Ms.e, Ve e (0,e). (6.29)

KSTE fi(r) — ;/()dT

g._;
(*)\

o0
+/ K(s,7,¢)e = dr | A(e)ae],
0
then, due to (iz), (zi) in Lemma 4, we obtain

'(s) — Fu(s, a)] ds < C (DE Mo e® D2 1| A(e)a,| 5)

0

<C (Dg + M%g(p*l)/%) . Vte[0,T], Vee (0,e) (6.30)

Using (6.25), (6.29), (6.30), from (6.28) we get

1Balloqo 7y + || 45 ° B

- (v-1)/20 _
o < 0 (Det+ My ). (631)
for all € € (0,1].

Finally, as (6.26), (6.27) and (6.31) imply (6.22) and (6.23), the proof is
complete. n
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Remark 6.2. If, in the conditions of Theorem 13, we assume that f, f. €
W2%(0,T, H), then (6.22) and (6.23) take the form

‘ c(o, T H)
HA1/2< —v +ace” 2)

D. =|f: - f’WlaOO(O,T; H) + [Ao(uoe — uo)l,
Mae = [A(e)ure] + [ felw20 0, 7; 1) T [Aru0e] + [A(e) ] -

<C (Mg 51/2+D>

! / -t
U, — vV tage =

<C(./Vl2 gl/4 +D>

L2(0,T; H)

7 An Example

Let © C R"™ be an open bounded set with C! boundary 9Q. In the real
Hilbert space L2(Q2), with the usual inner product

(u,v) :/ u(x)v(x) dz,
Q
we consider the following Cauchy problem

EatQ u€($7t) + at ue(xat) + A0U5(33>t) + 5A1U€(x7t) = f(l‘a t)7
xeQ, t>0, (7.1)
ue(x,0) = upe(x), Opucs(z,0) = uie(x)

where D(A;) = H?(Q) N H(Q), i = 0,1,

Agu(z Z O, (ij(2)0z,u(z)) + alz)u(z), u € D(Ay),
i,j=1
aij € CHQ), a € C(Q), a(x) >0, a;;(z) =aj(x), z€Q, (7.2)

and
n

Z az](x)ﬁz §j > ap ’5‘2, T € ﬁ, f (S Rn, ag > 0. (73)
i,j=1

Aju(x) = — Z s (bij ()0, u(z)) + / K(z,y)u(y)dy,

,j=1
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for u € D(Ay),
K:QxQ—R, KecL*(QxQ), (7.4)

bij € Cl(ﬁ), be C(ﬁ), b”(flf) = bji(ili), x € ﬁ, (75)

n

[b(2)] < bra(z Z bij(@)&i &) < bo Y aij(@)€i (7.6)

t,j=1 1,j=1

for z € Q and ¢ € R™. Under the hypotheses (7.2)-(7.3), the operator Ag is
positive and self-adjoint with D(Al/2) H} () and

1 Ag 20y = /Q (Z a;j() %u(w)%um+a(x>u2<x>> da,

i,7=1

for u € HE(Q). If (7.5) holds, the operator A; is self-adjoint with

HAiﬂuH%Q(Q) :/ (Z bij (%) Op;u(w) Oy u(x )+b(m)u2(x)> dx

i,j=1

+ /Q /Q K (x,y)u(z)u(y)dy de, Yu € Hi(Q).
Moreover, (7.2)-(7.6) imply (H2) with
w1 = max{bo, b1} + || K||L,(xq)/wo-
Let us now consider the unperturbed problem associated to (7.1)

{ Opv(z,t) + Agv(z,t) = f(x,t), z€Q, t>0, (7.7)

v(x,0) = up(x).
Using Theorem 12, we obtain:

Theorem 14. Let Q C R" be an open bounded set with C' boundary O05.
Let T >0 and p € (1,00|. Let us assume that (7.2)-(7.6) are satisfied. If

ug, upe € H*(Q) N HY(Q), wuie € LA(Q), f, f- € WHP(0,T; L*(Q)),

then there exist £g = £o(wo,w1) € (0,1) and C = C(T, p,n,wo,w1) > 0 such
that, for every e € (0,eq], we have

ue = vllego,m;z2)
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<C (Ms e + |upe — uo| + || fc — f”m(o;r;p(g))) )
where ue and v are the strong solutions of (7.1) and (7.7) respectively,
f =min{1/4, (p — 1)/2p}

and -
ME = ‘A(l)/2U05

+ [ure| + I fellwrro.m;L2()-

If, in addition, uy . € H}(Q), then
lue = vlleo,m;z2)

<O (Mie® /2 4 fug. — ol + £ = fll oo ey ) -
for each € € (0,g¢|, where 3 = min{1/4,(p —1)/2p} and

Mla = ‘A(l)/Qula

+ [Aouoe| + [Aruoe| + || fellwrr(o, s 22(0)-
Using Theorem 13, we deduce:

Theorem 15. Let QO C R" be an open bounded set with C* boundary 0S).
Let T >0 and p € (1,00]. Let us assume that (7.2)-(7.6) are satisfied. If

o, Uoe, Aouo, Artioe, Aotioe, ute, £(0), f-(0) € H*(Q) N Hg (),

and
fy f- € WP(0,T; L*(Q)),

then there exist £g = go(wp,w1) € (0,1) and C = C(T,p,n,wo,w1) > 0 such
that, for every e € (0,¢eq], we have

|

where v and u. are the strong solutions of (7.1) and (7.7) respectively,
B = min{1/4,(p— 1)/2p}, ac = £2(0) — ur- — A(e)uoe,

/ / -t
U —V + Qg€ =

<0 (Vo -0/ 1 5
([0, T); L2()) C(M%E +D5>’

55 =|fe— f”wlm(o,T; Hi() T | Ao (uos — uo)!,

Mae = [A@)ure] + | fellweno, s ma o) + [Aruoe] + [Ale)ae]
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A VIABILITY RESULT FOR
EVOLUTION EQUATIONS ON
LOCALLY CLOSED GRAPHS"

Marius Popescuf

Abstract

Using a tangency condition expressed with a set of integrals, we es-
tablish several necessary and sufficient conditions for viability referring
to evolution equations on locally closed graphs.

keywords: Differential inclusion, locally closed graph, tangent set, tan-
gency condition, multi-valued mapping, viability.

1 Introduction

Let X be a real Banach space, let I C R be a nonempty and bounded interval
and let K : I ~ X and F' : X ~ X be two multi-functions with nonempty
values, where X := graph(K). Let A: D(A) C X — X be the infinitesimal
generator of a Cp-semigroup {S(¢); ¢t > 0}.

Our aim here is to prove some new necessary and sufficient conditions in
order that K be viable with respect to A + F'. This paper is an extension of
the results established by Necula-Popescu-Vrabie [7].
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To be more precise, let us consider the Cauchy Problem

{ W' (t) € Au(t) + F(t,u(t))
u(r) =¢.
Definition 1.1. By a mild solution of (1.1) on [7,T] C I, we mean a function

u € C([r,T]; X) satistying (t,u(t)) € K, u(r) = £ and for which there exists
f e LY (r,T; X) with f(t) € F(t,u(t)) a.e. for t € [r,T] and

(1.1)

u(t):S(t—T)f-f—/ S(t—s)f(s)ds (1.2)

for each t € [1,T.

Definition 1.2. We say that the graph, X, of K : I ~ X, is mild viable
with respect to A + F, where F' : X ~ X, if for each (1,&) € K, there
exists 7' > 7, such that [7,7] C I and (1.1) has at least one mild solution
u: [r,T] — X. If T € (1,supI) can be taken arbitrary, we say that X is
globally mild viable with respect to A + F.

The first two sections of the paper are concerned with some prerequisites
and basic concepts and results needed in the sequel. In Section 3 we prove
the main necessary condition of viability, in Section 4 we give a relationship
between two tangency conditions, Section 5 contains the statement of the two
sufficient conditions for viability and the statement and proof of a technical
approximation lemma, while in Section 6, we give the proofs of Theorems 5.1
and 5.2.

2 Preliminaries

If (Y,d) is a metric space, y € Y and r > 0, D(y,r) denotes the closed
ball with center y and radius r > 0, i.e. D(y,r) = {z €Y; d(y,z) < r},
while S(y,r) denotes the open ball with center y and radius r» > 0, i.e.
S(y,r)={z€Y; dly,z) <r}. If BCY and C CY, we denote by

dist(y, C) := inf{d(y, 2); z € C}

and by
dist(B, C) :=inf{d(z,y); = € B, y € C}.

Also B(Y') denotes the family of all bounded subsets of Y.
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Definition 2.1. Let Y C X be nonempty. The function Sy : B(X) — Ry,
defined by

n(e)
By (B) :=inf § & > 0;3z1,72,..., Ty €Y, B C U D(zj,¢e) p,
i=1

is called the Hausdorff measure of noncompactness on X subordinated to Y .
If Y = X, we simply denote 8x by 3, and we simply call it the Hausdorff
measure of noncompactness on X.

Remark 2.1. We have the following properties:
(i) for each B € B(X) and r > 0 with B C D(0,7), we have 3(B) < r;
(ii) B(B) = 0 if and only if B is relatively compact ;

(iii) the restriction of By to B(Y') coincides with the Hausdorff measure of
noncompactness on Y ;

(iv) for each B € B(Y') we have 3(B) < fy(B) < 23(B).
The next lemma is due to Monch [4].

Lemma 2.1. Let X be a separable Banach space and { fr,; m € N} a subset
in LY(7,T; X) for which there exists £ € L*(t,T;Ry) such that

[fm(s)Il < £(s)

for each m € N and a.e. for s € [1,T]. Then the mapping

s = B({fm(s); m e N})

is integrable on [1,T] and, for each t € [1,T'], we have

s({/ fonls) ds: men})< [ B((fn(s): meN s, (21)

For further details on the Haussdorf measure of noncompactness see
Carja, Necula, Vrabie [3], Section 2.7, pp. 48~53.

Let X be a real Banach space, I C R a nonempty and bounded interval,
K : I ~ X a multi-function with nonempty values and let K := graph(K).
Here and thereafter, X is conceived as a metric space, whose metric, d, is
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defined by d((7,§), (0, ) = max{|T — 0|, || — p||}, for all (7,&), (0, n) € K.
Also, A denotes the Lebesgue measure on R. Furthermore, whenever we will
use the term strongly-weakly we will mean that the domain of the multi-
function in question is equipped with the strong topology, while the range
is equipped with the weak topology. Otherwise, both domain and range are
endowed with the strong, i.e. norm, topology.

Definition 2.2. The multi-function F': X ~ X is called (strongly-weakly)
almost u.s.c. if for each € > 0 there exists an open set O, C I such that
AMO:) < e and Fjj(n o.)xx)nx i (strongly-weakly) u.s.c.

Definition 2.3. The multi-function F': K ~ X is called integrally-bounded
if for each (7,¢) € X there exist p > 0, § > 0, £; € L'(I;R) and a negligible
set N1 C [ satisfying: for each (t,u) € (([r —3d,74+ 6]\ N1) x S(&,p)) N K,
we have

IE @ u)l| < ().

Remark 2.2. (i) If X is separable we can choose N; in Definition 2.3 the
same for all (7,£) € K and in this case for each (7,&) € (I \ N1) x X) N X,
F(7,€) is bounded.

(ii) Moreover, if, in addition, F' is closed valued and almost u.s.c., then,
for each continuous function w : I — X with (¢,u(t)) € K for each t € I,
the multi-function ¢ — F'(¢,u(t)) has at least one locally integrable selection
on I. The same conclusion holds true if F' is closed valued, strongly-weakly
almost u.s.c. and has separable range. The latter assertion follows from
Pettis’ Measurability Theorem 1.1.3, p. 3, in Vrabie [10].

The next special class of graphs was considered for the first time by
Necula [5].

Definition 2.4. Let K : I ~» X be a multi-function with graph, X. By a
simple solution issuing from (1,&) € X we mean a pair of functions (g,v) €
LY (7,T; X) x O([r,T); X) such that for all t € [r,T] we have (¢t,v(t)) € X
and

t
v(t) =St — T)§+/ S(t—s)g(s) ds

Definition 2.5. The graph, X, of K is said to be A-mild viable by itself if
for each (7,¢) € X, there exist T > 7, p > 0 and fy € L'(I;R), so that for
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each (7,€) € ([, T) x S(&,p)) NX, there exist a simple solution (g, v) issuing

from (7,£) defined on [7,T] such that
13(s)|| < £a(s) ae. for s € [7,T]

Remark 2.3. In other words, the graph, X, of K : [ ~» X is A-mild viable
by itself if and only if, for each (7,£) € K, there exist ' > 7, p > 0 and
¢y € LY(I;R), so that ([7,T) x S(&,p)) N K is mild viable with respect to
A + G, where the multi-function G : ([1,T) x X) N XK ~ X is defined by

G(t,§) :={ve X; [jv] <L)},

for each (¢,&) € ([7,T) x X)NXK

Remark 2.4. (i) Clearly, if K : I ~ X is constant and S(¢)K C K for each
t > 0, then X is A-mild viable by itself. Indeed, in this case, {5 = 0 and
G(t,&) = {0} satisfy all the requirements in Definition 2.5.

(ii) If K is A-mild viable with respect to some integrally-bounded multi-
function F' : X ~ X then, one may easily check out that, for each (7,¢) € K,
the function G, defined as in Remark 2.3, with p > 0 given by Definition 2.3,
and ¢ = {1, where ¢ are given by Definition 2.3, satisfies the conditions in
Remark 2.2, and thus X is viable by itself.

Let (7,£) € X and let E € B(X).

Definition 2.6. We say that E is A-right-quasi-tangent to X at (7,&) € K
if

h
lim inf %dist <S(h)§ + / S(h— $)Fpds, K(r + h)> =0, (2.2)
0

where

Fr={f € L.(R; X); f(s) € E ae. for s € R}.

Throughout, we denote by Q‘J’S%(T, €) the set of all A-right-quasi-tangent
sets to K at (7,§). If K is constant, E is A-right-quasi-tangent to X at (7, &)
if and only if it is A-quasi-tangent to K at £ in the sense of Carja, Necula,
Vrabie [2], [3]. The set QTS%(7, €) is used in Necula, Popescu, Vrabie [7] to
establish necessary and sufficient conditions for viability. Next we introduce
a new tangency condition which shall be used in the sequel, similar to the
one used in Popescu [8].

Let K be A-mild viable by itself, F' : X ~» X be integrally bounded and
let (7,€) € X. Let £ € L'(I,R) such that £(s) > max{/;(s),f2(s)} a.e. for
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s € I where ¢ is the function from Definition 2.3 and #5 is the function from
Definition 2.5.

Let us denote by C ¢ 45, the set of all continuous functions v : [7, 7+h] —
X for which there exits g € L (7, 7+h; X) such that (g, v) is a simple solution
issuing from (7,&) and ||g(s)|| < €(s) a.e. for s € [r, 7+ h]. Obviously Cr¢¢n
is nonempty for h small enough.

Next, let us define by € ¢ ¢, the set of all functions f € L(7,7+h; X) for
which there exits v € C;¢ ¢ such that f(s) € F'(s,v(s)) for all s € [1,7+h].
If I satisfies the conditions in Remark 2.2 then €. ¢/ is nonempty for h
small enough.

We consider the generalized tangency condition

1 T+h
lir]?lionf Edist (S(h)§ + / S(t+h—3s)Er¢eonds, K(T+ h)) =0 (2.3)

At this point, let us observe that (2.3) makes sense whenever €, ¢4 p
is nonempty. As we already pointed out, in order for the above set to be
nonempty it is sufficient that K be viable by itself and F' : X ~ X be
integrally bounded, closed valued and almost u.s.c. Here and thereafter,
when we say that (2.3) takes place, we understand that X is viable by itself,
F is integrally bounded and E,¢¢5 # 0 for h small enough (sufficiently
for a certain h). The fact that (2.3) can take place even in the absence of
continuity or measurability conditions for F' is illustrated by the first very
simple necessary condition for viability in the next section.

3 Necessary conditions for viability

The hypotheses we will use in the sequel are listed below.

(Hy) A: D(A) € X — X is the infinitesimal generator of a Cp-semigroup
{S(t); t > 0} of type (M,w), i.e., |[|S(t)]| < Me*t for each t > 0;

the graph X is A-mild viable by itself;
F' has nonempty and closed values and is integrally bounded ;
F: X~ X is almost u.s.c.;

F: X~ X is strongly-weakly almost u.s.c.;
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(Hg) there exists a set N C I, with A(V) = 0, and such that for each
(1,€) € (I\ N) x X)NX, we have F(r,&) € QTS(r,£).

(H7) there exists a set N C I, with A(IN) = 0, and such that for each
(1,6) € (I\N) x X)NXK, we have (2.3)

(Hg) for each (7,&) € K, we have (2.3).

Theorem 3.1. If X is mild viable with respect to A + F where F is an
integrally bounded multi-function, then (Hz) and (Hg) hold true.

Proof. First let us observe that even if F' is not closed valued and almost
u.s.c. the sets Cr¢¢p, and €, ¢ are nonempty for h small enough. Indeed,
let p and ¢ from the Definition 2.3 and w : [7, T] — S(§, p) be any solution of
(1.1) with T < 7+4. Then there exists f € L'(r,T; X) with f(t) € F(t,u(t))
a.e. for t € [r,T] and

u(t) = S(t—7’)§+/ S(t—s)f(s)ds

forallt € [r,T]. Hence, for each h € (0,T—7] wehaveu € Cr¢con, f € Ercun
and

T+h
dist <S(h)§ + / S(r+h = 8)rconds, K(r+ h)>

< dist (S(h)£+ /:+h S(t+h—s)f(s)ds,u(T + h)> =0

and this completes the proof.
Let us remark that we have proved that for h sufficiently small

T+h
{S(h)¢ + / S(t+h—3s)Erepnds} NK(T+h)#0

O

So, under more general hypotheses on F', (H7) is necessary in order for
X be viable with respect to F. In that follows, we shall see that, under some
additional natural assumptions on F', the converse statement is also true.
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4 The relationship between (Hg) and (H7)

Definition 4.1. We say that the multi-function F' : K ~ X is almost -0
Ls.c. if for each v > 0, there exists an open set O, C I, with A(0,) < v,
and such that the mapping (¢,§) — F(t,§) is e-6 l.s.c. on ((I\0,) x X)NXK.

Theorem 4.1. Let X be separable and let X and F satisfy (Hz) and (Hg).
(i) If F is almost €6 l.s.c., then (Hg) tmplies (Hr).
(ii) If F is almost u.s.c., then (Hy) implies (Hg).

Proof. From (Hjs) and the fact that X is separable, it follows that there
exist a finite or at most countable set I, (74,&;)ier C K, (pi)ier C (0,00),
(6:)ier C (0,00), (£;)ier C LY(I;R) and a negligible set N7 C I such that
K C User(m — 6,1 + 0;) x S(&,pi) and, for all i € T, and all (t,u) €
(((7’Z — 0, T + (51) \ Nl) X S(fz,pZ» N X, we have HF(t,u)H < Ez(t)

We begin with the proof of (i). Since F'is ¢-0 ls.c., it follows that, for
each n € N, n > 1 there exists I, C I, with A(I \ I,) < £, and such that the
mapping (¢,&) — F(t,€) is e-0 Ls.c. on (I, x X)NXK.

Let A,, C I, the set of all density points of I, which are also Lebesgue
points for ¢; for all i € I'. Let A = (Up>145,) N (L \ (N1 UN)), where N is
the negligible set in (Hg). Obviously, A({ \ A) = 0.

Let (1,€) € (A x X)NXK. We will show that

1 T+h
lir}?lionf Edist (S(h)§ + / S(T+h—5)Erconds, K(T+ h)) =0

Let ip € T' and ngp € N such that 7 € A,, N (73, — iy, Tip + 0iy) and
§ € S(&iy, pig)-From (Hg), it follows that there exists hy, | 0, fr € Fp(re)
and p, € X, with [|p,| — 0, and such that

T+hn
S(ha)é + / S(r+ b — $)fu(s) ds+ hupn € K(r + 1) (4.1)
foralln e N;n > 1.
Let € > 0 be arbitrary but fixed. Since X is viable by itself there exists
0 > 0 and v € Cr¢ys. Diminishing ¢ if necessary we may assume that
T+ 06 < T, + i, and v(t) € S(&,, pi,) for all t € [1,7 + J] and

F(r,&) C F(t,v(t)) + D(0,¢) for all t € [1,7 + 0] N Ap,.-
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At this point, let us observe that, for each n € N, n > 1, the multi-function
t— F(t,v(t)) N (fn(t)+D(0,¢€)) is measurable, nonempty and closed valued
from [r,7 + 0] N A,, to X. Since X is separable, from Kuratowski and
Ryll-Nardzewski Theorem 3.1.1, p. 86 in Vrabie [9], it follows that the
multi-function above has at least one measurable selection. Let us denote by
gn : [T, T]NAp, — X such a selection. Next, let us extend g, to a measurable
selection of F'(-,v(+)) on [1, T+ 4], extension denoted, for simplicity, again by
gn- So, for each n € N, n > 1, and t € [1,7 + J], we have

gn(t) € F(t,v(1)).
Also, for each n € N, n > 1, and t € [1,7 + ] N Ap,, we have

an(t) _gn(t)H <e.

From (4.1) and the fact that g, € ;¢ ¢ we deduce that for each h,, € (0,0)

1 T+hn
h—dist (S(hn)f + / S(T+hy —5)Ere0n, ds, K(T + hn)>

1 TJrhn
S‘hb/ S(7 + i — 5)(gn(5) — fa(s)) ds]| + [|pa]
wd 1
< Me*’— [fn(s) = gn(s) ds
n S [1,7+hn]N AR,
1
+h7 an(s) _gn(S)Hds+ ||pn||
n J[1,7+hn]\Ang
w 1
< Me*’e + — (fn ()l + llgn(s)I]) ds + [[pnll

b J (e 74\ Ay

1
ng%+h/’ (Cio (7) + Lig (5)) ds + [|pu]
n J[1,7+hn]\Ang

1 2

< Mewser L i)~ 3o () d L) ds [l
n J[1,7+hn]\Ang n J[1,7+hn]\Ang

A7, 7+ ha] \ Any)

L) |

1 T+hn
§A4¢ﬁe+h/" | iy (5)—ig () | ds+20, ()

n
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Passing to limsup in the inequality above and taking into account that
T is a density point and a Lebesgue point, we get

T+hn
lim sup idist (S(hn)§ + | S(t+hn—5)Ercon, ds, K(T+ hn)> < Me¥o¢
n—00 hn T
and therefore (Hy) holds true and this completes the proof of the first part
of Theorem 4.1.

Now let us prove (ii). Since F is almost u.s.c., it follows that for each
n € N, n > 1 there exists I, C I, with A( \ I,) < %, such that the mapping
(t,&) — F(t,€) is u.s.c. on (I, x X)NX.

Let A, C I, the set of all density points of I, which are Lebesgue points
too for ¢;, for all i € T'. Let A = (Up>14,) N (I \ (N1 UN)), where N is the
negligible set in (H7). Obviously, A({ \ A) = 0.

Let (7,¢) € X. We will show that

S THh

hrlrzll%)nf EdlSt <S(h)§ + /T S(T+h—8)Fp(re ds, K(T + h)> = 0.
Let i9p € I' and ng € N such that 7 € A, N (73, — iy, Tiy + 0i,) and

€ € S(&y, piy)- From (Hy), it follows that there exists hy, | 0, vn € Creph,s

Jn € Ergon, and p, € X, with ||p,|| — 0, such that for alln € N, n > 1 and

all t € [T, T + hy] we have f,,(t) € F(t,v,(t)) and

T+hn
S(hn)E + / S(r+ hy — 8)fu(5) ds + hupn € K(7+ b)) (4.2)

T

Let € > 0 be arbitrary but fixed and let 6 > 0 be such that
F(s,pu) C F(1,8) + D(0,¢), for all (s,u) € ([1,7+ ] N Ap, X S(&,0))NK

Since for all n € N, n > 1 and all ¢ € [7,7 + h,] we have

T+hn

ln(t) — €] < I1S(t — 7)€ — €]| + Me<hn / (s) ds

T

and diminishing ¢, if necessary, we may suppose that 7 + ¢ < 7, + d;, and
vn(t) € S(&iy, piy) NS(E,0) for all n > 1 with h, < ¢ and all ¢ € [, 7 + hy)].
Then, for all n > 1 with h,, < d, we get

fu(t) € F(t,v,(t)) C F(7,€) + D(0,¢) for all t € [7,7 + hy] N Ap,



72 Marius Popescu

Using the same arguments as in the first part of the proof we deduce
that there exists a measurable selection gy, : [T, 7 + hyp] N Ay, — F(7,€) of
the multi-function t — F(7,£) N (fn(t) + D(0,€)) on [, 7 + hy| N Ap,. Next,
let us extend g, to R by using a fixed element in F'(7, &), extension denoted,
for simplicity, again by g,.

From (4.2) and the fact that g, € Fp(;¢) we deduce that for each h,, €
(0,0)

T+hn
hidist (S(hn)g n / S(7 4 hn — 8)Fp(rey ds, K (7 + hn))
1 T+hn
< [ st = 9)0.06) = £uls ] + Il

From now on the proof is identical to the one used in the first part of
the Theorem.
O

5 Sufficient conditions for viability

Definition 5.1. We say that the graph X is:

(i) locally closed from the left if for each (7,£) € K there exist T' > 7 and
p > 0 such that, for each (7,,&,) € ([7,T] x D(, p)) N K, with (7,)n
nondecreasing, lim,, 7, = 7 and lim,, &, = &, we have (7,¢) € K;

(ii) closed from the left if for each (7,,&,) € K, with (7,), nondecreasing,
lim, 7, = 7 and lim,, &, = £, we have (7,¢) € K;

(iii) locally compact from the left if, it is locally closed from the left and,
for each (7,¢) € X there exist 7' > 7 and p > 0 such that, for each
(Tn,&n) € ([, T)xD(&, p))NK, with (7,), nondecreasing, and lim,, 7, =
7, there exists a convergent subsequence (&, )x of (&n)n ;

(iv) compact from the leftif, it is closed from the left and, for each (7,,,&,) €
X with (7,), nondecreasing, lim, 7, = 7, and (&,), bounded, there
exists a convergent subsequence (&, )k of (&n)n.

Remark 5.1. Let (&,,)r be the subsequence of (§,), whose existence is
ensured by (ii) in Definition 5.1 and let £ = limy &,,. Then (7,¢) € X.
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Definition 5.2. By a Carathéodory uniqueness function we mean a function
a: I x Ry — Ry such that:

(i) for each x € Ry, t — a(t,x) is locally integrable;
(ii) for a.e. t € I, x — a(t,z) is continuous, nondecreasing;

(iii) for each 7 € I, the only absolutely continuous solution of the Cauchy

problem
{ a/(t) = aft, z(t))
z(1)=0

iIsx=0.

Definition 5.3. We say that A + F' is S-compact if for all (7,&) € K there
exists § > 0, p > 0, a Carathéodory uniqueness function, a: I x Ry — R4,
a negligible set N C I and a continuous function m : [0,00) — [0, c0), such
that, for all B C D(&, p), all t € (0,00) and all s € [t — 0,7+ d] \ N we have

BIS@F(({s} x B)NX)) <m(t)als, B(B)). (5.1)
Remark 5.2.

(i) If the Cp-semigroup {S(t); t > 0} is compact and F' is integrally
bounded then A 4+ F' is (3-compact.

(ii) If F is B-compact (see definition 5.3 in Popescu [8]), then A 4+ F' is
(B-compact.

Theorem 5.1. Let X be locally closed from the left and let F' : X ~ X be
nonempty, convexr and weakly compact valued. If (Hs), (Hs) and (Hs) are
satisfied and A + F is B-compact then a necessary and sufficient condition
in order that K be mild viable with respect to A+ F is (Hy).

Theorem 5.2. Let XK be locally compact from the left and let F : K ~ X be
nonempty, conver and weakly compact valued. If (Hg), (Hs) and (Hs) are
satisfied, then a necessary and sufficient condition in order that X be viable
with respect to A+ F is (Hr).

From Theorems 5.1, 5.2 and Brezis-Browder Ordering Principle, i.e. The-
orem 2.1.1, p. 30 in Carja, Necula, Vrabie [3], we easily deduce the two global
viability results stated below.
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Theorem 5.3. Let X be closed from the left and let F' : X ~ X be nonempty,
convex and weakly compact valued. If (Hs), (Hs) and (Hs) are satisfied and
A+ F is B-compact then a necessary and sufficient condition in order that
XK be globally mild viable with respect to A+ F is (Hy).

Theorem 5.4. Let X be compact from the left and let F : X ~ X be
nonempty, conver and weakly compact valued. If (Hg), (Hs) and (Hs) are
satisfied, then a necessary and sufficient condition in order that K be globally
viable with respect to A+ F is (Hy).

The next lemma, essentially inspired from Céarja, Monteiro-Marques [1],
is the main step through the proof of both Theorems 5.1 and 5.2.

Lemma 5.1. Let I be a nonempty and bounded interval and K : I ~ X a

multi-function with locally closed from the left graph, K, let (1,€) € K and let

F : X~ X be a nonempty valued multi-function. Suppose (Hy), (Hz), (H3)

and (H7) are satisfied. Let Z C I be a negligible set including the negligible

set in (Hr) and ¢ € L'(I,R) be the function from the definition of € ¢ p.
Let p >0 and T > 7 be such that:

(1) (|7, T) x D(¢,p)) N X is closed from the left:;

(2) |F(t,u)|| < £(t) a.e. forte[r,T) and for allu € K(t) N D(E,p);

(3) T and p satisfy Definition 2.5 ;

(4) subyepr ) |S(t =76 =€l + M=) [Ti(s)ds + Me*T~" (T —7) < p.

Then, for each e € (0,1) and each open set O C I, with Z C O, there exist a
family Pr = {[tm, sm);m € '}, of disjoint intervals, with T" finite or at most
countable, and five functions f,r,v € L*(1,T;X), 0 : {(t,s); T < s <t <
T} — [0,T — 7] measurable, and u € C([1,T); X) such that:

(i) Ultm, sm) = [1,T) and sy, — ty, < &, for allm € T;
(i) if tm, € O, then [tm, Sm) C O;
(i) wltm) € D(E,p) 1V K (tm), for all m € T, u(T) € D(E,p) N K (T):

(iv) O(t,s) < t—s; t+— O(t,s) nonexpansive on (s,T| and, for each t €
(1,T], s+ 0(t,s) measurable on [1,t);
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(v) v € C([tm, sm); X); (t,0(t)) € ([, T) x S(§ p)) NK for all t € [1,T)
and ||v(t) — u(tm)|| < e for all t € [tm, sm);

(vi) f(s) € F(s,v(s)) a.e. for s € [tm,Sm) if tm & O and || f(s)]| < IU(s) a.e
for s e [r,T];

(vii) ||r(s)|| < e a.e. forse|[r,T];
(viii) u(t) = S(t—7)§+f: S(t—s)f(s)ds—i—f: S(0(t, s))r(s)ds forallt € [1,T];
(ix) ||u(t) — u(tm)|| < e for allt € [tm, Sm) and m € T.

Proof. Let € be arbitrary but fixed in (0,1) and let O C R be an open
subset with Z C O. We will show that there exist 6 = d(¢,0) € (7,7)
and Ps, f,r,v,0,u such that (i)~(ix) hold true with 0 instead of T. We
distinguish between the following different cases.

Case 1. If 71 € O, we take I' = {1}, t; = 7, 1 = § with 6 € (7,T)
small enough in order to [1,6) C O, 7 —§ < e and there exists a simple
solution (f,v) issuing from (7,&), defined on [r,d] with [|f(s)| < £(s) a.e
for s € [1,d]. Further, let us diminish ¢ such that ||v(¢) — &|| < min{e, p} for
all ¢ € [, 0] and let us define Ps = {[7,d)}, 6 =0, r = 0 and u(t) = v(t) for
all t € [r,0].

Case 2. If 7 ¢ O then 7 ¢ Z which implies that there exist h, | 0, v, €
Crethny fn € Ergon, such that fi,(s) € F(s,vn(s)) a.e. for s € [7,7 + hy]
and p, € X, with ||p,|| — 0, such that

T+hy
S(hn)§+/ S(T+ hy, — 8) fn(s)ds + pphy € K(T + hy,)

foralln € Ny n > 1. Let ngp € N and 6 = 7 + hy, be such that ¢ € (1,7,
hng < &, ||Pn, || < € and
’7’+hn0
sup |w@—7ﬁ—gw+MwM{/ 0(s) ds + hny < min{e, p}
te[T,T+hng] T
We define Ps = {[1,0)}, f(s) =

(

T() Png, v ()—Uno() I“SE[

(viii). We may easily see that (i)~(i
Let

fro(s), O(t;s) = 0 for 7 <'s <t <4,
,0], and let u : [r,0] — X be given by
x) are satisfied.

U={(Ps, fyr,v,0,u); § € (1,T], (i)~(ix) hold true with J instead of T'}.
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As we already have shown, U # (). On U we define a partial order by:

(?517]0177”1;1]1’01)1/41) j (?52,f2,7“2,1)2,92,u2),

61 S 52) Tél g (})527

fi1(s) = fa(s),r1(s) = ra(s),v1(s) = va(s) a.e. for s € [r, 1]
01(t,s) = 0a(t,s) for T < s <t <0y

u1(s) = ua(s),for all s € [1,d1].

We will prove that each nondecreasing sequence in U is bounded from above.
Let (ng,fj,rj,vj,ﬁj,uj)jzl be a nondecreasing sequence in U and let 6§ =
sup;>10;. If there exists jo € N such that §;, =4, then (9)510 2 FiosTj0>Vj0 050, Ujo )
is an upper bound for the sequence. So, let us assume that ¢; < J, for all
j = 1. Obviously, ¢ € (,T]. We define P5s = U;j>1Ps,, f(s) = fj(s), 0(t,s) =
0;(t,s) for 7 < s <t <65, v(s) =vj(s) and 7(s) = r;(s) for all j and all s €
[7,0;). Clearly, f,r,v € L*(7,8; X). Since |0,(5;,s) — 0;(8;,s)| < |5; — &;] for
all 4,7 > 1 and 7 < s < min{d;, 9, }, we may define 6(9, s) = lim;_,o 0;(d;, 5)
for all 7 < s < §. One may easily see that 6 satisfies (iv). Next, we define
w:[r,0] = X by

u(t) = S(t—7)§+/ S(t—s)f(s) ds—i—/ S(O(t, s))r(s)ds,

for all ¢t € [r,0]. We have u € C([r,d]; X) and u(s) = u;(s), for all j > 1 and
all s € [1,6;]. Since u(6) = limys u(t) = limj_o0 u(d;) = lim;j_oc u;(d;), and
u;j(0;) € D(&,p) N K(6;) and the latter is closed from the left, we deduce
that u(d) € D(&, p) N K(5). The rest of conditions in lemma being obviously
satisfied, it follows that (Ps, f,r,v,0,u) is an upper bound for the sequence.
Thus, the partially ordered set (U, <) and the function N : (U,=<X) — R,
defined by N(Ps, f,r,v,0,u) = ¢, for each (Ps, f,r,v,0,u) € U, satisfy the
hypotheses of the Brezis-Browder Ordering Principle, i.e. Theorem 2.1.1,
p. 30 in Carja, Necula, Vrabie [3]. Accordingly, there exists an N-maximal
element in U. This means that there exists (Pg«, f*,r*,v*, 0%, u*) € U such
that, whenever

(g)(S*vf*v T’*,'U*, 9*771'*) = (?57?7 T, ﬁagvﬂ%

we necessarily have
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We will show that 6* = T'. To this aim, let us assume by contradiction that
0" < T. We distinguish between two cases.

Case 1. If §* € O, we take 0 € (6*,T) such that [6*,0] C O and 6—0* < ¢
and there exists a simple solution (g, v) issuing from (0*,u*(0*)) defined on

[6%,0] with [lg(s)|| < £(s) a.e. for s € [6*,5]. We may diminish § such that

|v(t) — u*(0%)|] < e for all t € [0*,0]. Let us define

<, | f*(s) for s € [1,6%] | 1*(s) for s € [1,6"]
7= { ()=

g(s) a.e for s € (6%,6 0 for s € (6%, 6] ’

0*(t, s) forr <s<t<§*
Ot,s) =14 t—0*+0%(0%s) forT<s<&<t<d ,
0 foro* <s<t<$

u*(s), for s € [r,0"]

7= { v(s), for s € (6%, 9]

v [ v¥(s), for s e[r,6")
o) = { v(s), for s € [0%,0] als)

and P5 = Ps- U {[6%,0)}.
It follows that (P, f,7,9,0,u) €U, (Ps~, f* % 0", 0% u*) 2 (P5, f, 7,7, 0,7),
but §* < 0 which contradicts the maximality of (Ps«, f*, r*, v* 6% u*).
Case 2. If 6" ¢ O then §* ¢ Z which implies that there exist hy | 0,
Vn € Cov o (5%) 0% hns S € Es% ur(5%),6+ b, SUCh that fn(s) € F(s,vn(s)) a.e.
for s € [6%,0" + hy] and p, € X, with ||p,| — 0, such that

0 +hn
S(hp)u*(6%) + / S(0* 4 hy — 8) fn(s) ds + pphyn € K(6* + hy,)
for all n € N, n > 1. Since by (4) in Lemma 5.1 u*(6*) € S(&, p) we may
choose ng € N and § = §* + hy, be such that § € (7,T), hy, < ¢, ||pnol| < €
and

3 +hn
sup ||S(t—6%)u*(6") —u*(8%)||+ Mehno / ¢*(s) ds+ Me* T, < v
tE[6*,6*+hng] *

where v = min{e, p — ||u*(6*) — £|}.
Let us define Pz = Ps- U {[6*,6)}, 0 as in Case 1 and

(FOu el g (el i (rehoel

B Dng, S € (0%, 0] Ung, S € (6%,8] °

f(s)= fro(s),s € (0%,9
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= LOE ]
S(t— 0*)u* )—l—f5* — 8) [y (8) ds + (t — 6)pp,, for t € (6*,9].

We can easily see that (i)~(ix) are satisfied. So, (Pj, f,7,v,0,u) € U and,
in addition, (Ps«, f*,r*,v*,0%,u*) = (P5, f,7,0,0,%). But 6* < ¢ which
contradicts the maximality of (Ps«, f*, 7%, v*, 6%, u*). Hence 6* = T, and
Pse, 5, 7", v*, 0% and u* satisfy all the conditions (i)~(ix). The proof is
complete.

L]

Definition 5.4. Let ¢ > 0, Z and O be as in Lemma 5.1. An element
(Pp, fyr,v,0,u) satisfying (i)~(ix) in Lemma 5.1, is called an (g, O)-approzi-
mate solution of (1.1).

6 Proof of Theorems 5.1 and 5.2

Proof. Since the necessity follows from Theorem 3.1, we will confine ourselves
only to the proof of the sufficiency.

Let Z C R be a negligible set including the negligible sets appearing in
(H7) and Definition 5.3. Let ¢, € (0,1), with &, | 0, let (0,,)p,>1 C R be a
sequence of open sets, and let ¢ the function in Lemma 5.1. We notice that
we may assume with no loss of generality that the sequence (0,),>1 is so
chosen to satisfy :

(a) Z C 0Oy foreachneN,n>1;
() Opy1 C Oy and A([1,T]NO,,) < e, foreachn e N, n > 1;
(¢) Fii(n\0,)xD(¢,p)nx is strongly-weakly u.s.c., for each n € N, n > 1;

Let p > 0 and T" > 7 be as in Lemma 5.1, and such that p satis-
fies Definition 5.3 and let n € N, n > 1 be arbitrary but fixed. Let
(PR, fr, n, Un,y Oy up))n be a sequence of (ep, Oy)-approximate solutions
of (1.1), sequence whose existence is ensured, again by Lemma 5.1. If
Pro={[ty,,sy); m € I'y} with Iy, finite or at most countable, we denote
by a, : [1,T) — [r,T) the step function, defined by a,(s) = ¢, for each
s e [ty,sn). Clearly

mvm

lignan(s) =s (6.1)

uniformly for s € [, T).
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We will show that, on a subsequence at least, (uy),, is uniformly conver-
gent on [7,T] to some function u.

We analyze first the case when X is separable. From (vii) in Lemma 5.1,
it follows that, for each ¢ € [1, T, we have

3 ({/:S(Gn(t, $))rn(s) ds; m > 1}) 0. (6.2)

Next, let us observe that

(@] <€) (6.3)

for each n > 1 and a.e for ¢t € [, T].
From (v) and (ix), we deduce that

lirrln [un(an(s)) —un(s)|| = 0 and lizn [un(an(s)) —vn(s)|| =0

uniformly for s € [7,T). So we have lim,, ||v,(s) — up(s)|| = 0 uniformly for
s € [r,T). Then
B{vn(s) —un(s); n>1}) =0 (6.4)
for each s € [1,T).
Next, by (viii) in Lemma 5.1, we obtain

un(t) = S(t — 7)€ + / S(t— 8) fuls) ds + / S(0n(t,5))rn(s)ds  (6.5)

forallm > 1 and t € [1,T].
Let k € N, k> 1and t € [r,T]. In view of (6.2), (6.5) and Lemma 2.1,
we have

B{un(t); n = k})

<3 <{/:S(t ) fu(s)ds: > k}>+ﬁ <{/:S(9n(t, $))rn(s) ds; n > k})

< / BUS(E = ) fals): n= kD ds+ | BUSE = 8)fals); n > k})ds
[7,t]\ Ok Ok

(6.6)
Since fn(s) € F(s,vn(s)) a.e. for s € [1,T]\ O and A+ F is f-compact
we deduce that

BUS(E = s)fuls); n > k}) <m(t —s)als, B({vn(s); n = k}))
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for all t € [7,T] and a.e. for s € [7,T]\ Of. Let ag = (supscpor—nm(s))c,
then «q is a Carathéodory uniqueness function, too.
So, from (6.6) and (6.3) it follows that

B{un(t); n>k}) < / ao(s, B{vn(s); n >k} ds+Me* T~ [ (s)ds
[7,t]\ O O

Since by (6.4) we have S({un(t); n > k}) = B({vn(t); n > k}) and
B({un(t); n > k}) = B({un(t); n > 1}), passing to the limit for &k — oo
in the inequality above and taking into account that aq is a Carathéodory
uniqueness function, it follows that ({un(t); n > 1}) = 0. Thus {u,(t); n >
1} is relatively compact for each t € [7,T]. In view of (6.3) and using (6.2)
and Theorem 8.4.1, p. 194 in Vrabie [10] we conclude that, on a subsequence
at least, (up), is uniformly convergent on [r,7] to some function u. But
lim,, vy, (t) = u(t), uniformly for ¢ € [7,T), and hence, for each k > 1, the set

Cr ={(t,vn(t)); n>k, t €[r,T)\ Ok}

is compact. Since F' is strongly-weakly u.s.c. and has weakly compact values,
by Lemma 2.6.1, p. 47, in Carja, Necula, Vrabie [3], it follows that, for each
k > 1, the set

By:=conv [ | |J Ft,ont)

n>kte[r,T)\ Ok

is weakly compact. We notice that ||f.(s)|| < ¢(s) a.e. for s € [r,T] and
fn(s) € By for each k > 1 and n > k and a.e. for s € [r,T]\ Of. Since
¢ € LY (1,T;R), By is weakly compact and limy A(O;) = 0, by Diestel’s
Theorem 1.3.8, p. 10, in Céarja, Necula, Vrabie [3], it follows that, on a
subsequence at least, lim,, f, = f weakly in L!(7,T; X). As lim,, v, (t) = u(t)
uniformly for ¢ € [r,T], and, by Lemma 5.1, for each k > 1, each n > k, we
have f,(s) € F(s,vn(s)) a.e. for s € [1,T]\ Ok, from Theorem 3.1.2, p. 88,
in Vrabie [9], we conclude that f(s) € F(s,u(s)) for each k > 1 and a.e. for
s € [r,T]\ Og. Since limy A(Of) = 0, we get

f(s) € F(s,u(s)) a.e. for s € [1,T] (6.7)

Finally, passing to the limit both sides in (6.5), for n — oo, we get

u(t) =St —71)¢+ /tS(t— s)f(s)ds,
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for each t € [7,T]. Since v,(t) € K(t) and lim,, v, (t) = u(t) for all ¢t € [r,T)
and X is locally closed from the left, it follows that u(t) € K(t) for each
t € [1,T]. By (6.7), we conclude that u is a mild solution of (1.1), and this
completes the proof when X is separable.

If X is not separable, we have to observe that there exists a separable
and closed subspace Y C X such that the families: {S(-)fn(); n > 1},
{S()un(-); n> 1}, {S()vn(); n > 1} and {S(-)rp(-); n > 1} are Y-valued.
Then, to complete the proof, it suffices to follows the very same arguments
as before and to make use of (iv) in Remark 2.1.

The proof of Theorem 5.2 is exactly the same with the exception of
obtaining the fact that {u,(t); n > 1} is relatively compact. Indeed, since
X is locally compact from the left, it follows that the set {v,(t);n > 1} is
relatively compact. Moreover, recalling that

lim [|vg,(s) = un(s)]| = 0

for s € [r,T), it follows that {uy(t); n > 1} is relatively compact for all
t € [1,T). The remaining of the proof is identical to the one of Theorem
5.1. O
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DYNAMIC ANALYSIS OF TWO
ADHESIVELY BONDED RODS*
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Abstract

This work presents two models for the dynamic analysis of two rods
that are adhesively bonded. The first model assumes that the adhesive
is an elasto-plastic material and that complete debonding occurs when
the stress reaches the yield limit. In the second model the degradation
of the adhesive is described by the introduction of material damage.
Failure occurs when the material is completely damaged, or the dam-
age reaches a critical floor value. Both models are analyzed and the
existence of a weak solution is established for the model with damage.
In the quasistatic case, a new condition for adhesion is found as the
limit of the adhesive thickness tends to zero.

keywords: Adhesion, elastic rod, dynamic contact, bonding function,
existence and uniqueness

1 Introduction

We study two different models for the dynamic process of debonding of two
slender rods that are adhesively bonded. In the first model, the adhesive
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is treated as a short rod made of a softer elasto-plastic material. System
failure, i.e., complete debonding, occurs when the stress reaches the yield
limit of the adhesive material. In the second model, the adhesive is treated
as a damageable rod via the use of a damage function. In this case, there
is a continuous decrease in the adhesive strength as cycles of tension and
compression progress. The adhesive undergoes cumulative damage, similar
to fatigue, and may completely fail, even if the cyclic stress never reaches
the yield limit.

There is considerable interest in the engineering literature in models for
material damage and metal fatigue, since predicting damage failure is of
paramount concern to the design engineer.

Recent mathematical models for material damage, following the funda-
mental idea of Kachanov in the 1960s (see [11] for details) of introducing
an internal variable, the damage function that measures the damage of the
material, can be found in the monographs [10, 18, 22, 25|, as well as in the
recent papers [6, 7, 13, 17] and in the references therein. The various aspects
of general models of material damage were studied in these references. Mod-
els of damage in specialized settings, similar to the one in this paper, can be
found in [2, 3, 4]. Related mathematical models are those of adhesion, where
a surface internal variable, the bonding function, was introduced by Frémond
[10] and has a similar interpretation, namely, it measures the damage of the
surface bonds.

Mathematical models for adhesive contact can be found in the mono-
graphs [22, 25] and in recent papers [1, 8,9, 15, 20, 21] (see also the references
therein).

In this paper we combine the two concepts of a damage function and
a bonding function, and use the first to derive the source function for the
debonding process. We consider a simplified one-dimensional model of two
rods glued together. In this model we obtain an evolution equation for the
bonding function by considering the evolution of the damage of the glue as
the glue layer becomes relatively thin.

This work is the continuation of [21], where the quasistatic model was
studied and numerically simulated. However, there the model did not al-
low for complete debonding in finite time. Models which allow complete
debonding can be found in [15, 20] and here. We note that some of the
models proposed and used in the above literature do not allow for complete
debonding, and the issue is under current study.
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As noted above, we consider a setting in which two thin rods are glued,
and the glue is considered as a third (shorter) rod. In one of the models,
the adhesive layer is considered as a damageable material. System failure
happens when the adhesive reaches complete damage, and then the rods
completely debond. The main interest in this work is in the models, and in
the limit when the thickness of the adhesive layer approaches zero.

We present the two dynamic models in Section 2: one without, and the
other one with material damage. We establish the existence of a weak solu-
tion for the second model in Section 4, and obtain interesting estimates on
the strain in Section 5. For the first model the existence of the unique solu-
tion is straightforward to show. Then, in Section 3, we study the quasistatic
problem, which reduces to a nonlinear ordinary differential equation for the
damage function, since the equations of motion for the displacements can be
integrated. Thus, we obtain expressions for the time to failure, i.e., the time
to complete debonding. We also pass to the limit when the glue thickness is
very small, and obtain an evolution equation for the adhesive as a limit of
the damage equation, Problem Pq. In this way, we obtain a new expression
(unlike any in the above references) for the debonding source function, in
the limit of the damage source function. This is the main modeling novelty
in the paper. Some of the estimates in Section 5 are new, too.

The paper concludes with Section 6, where some future research sugges-
tions can be found.

2 The model

Figure 1 depicts the setting of the two bonded rods. The left end of the first
rod is attached to a movable device. The reference configuration of the rods
are 0 < x <l; and ls <z < L (I; <l3), and the interval [, ls] is occupied
by the adhesive, assumed to be a softer deformable material.

The horizontal displacements of the rods are u; = u;(z,t), where i = 1,2
for rod 1 and rod 2, respectively. The displacement of the adhesive is ug =
uo(z,t). Below, we use the subscripts 1 and 2 for the rods, and 0 for the
adhesive.

We are also interested in the limit case when the thickness of the adhesive
layer vanishes, i.e., |l — I;| — 0.

A body force of density fp = fp(x,t) (per unit length) is acting on the
rods, and on the adhesive segment. The left end (x = 0) of rod 1 is subjected
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fiB foB
(1) adhesive rigid
support
device
ul(xvt) Uo(ﬂf,t) UQ(CE,t)
0 l1 Iy L z

Figure 1. Two rods in adhesive contact

to a dynamic axial displacement ¢ = ¢(¢). Thus u;(0,t) = ¢(t). The right
end of rod 2 is fixed, so ug(L,t) = 0. When ¢ is negative, the rods are in
tension, and when ¢ is positive, the are in compression.

The dynamic motion of each one of the three rods is described by the
wave equation and the displacements are assumed to be continuous at the
interfaces x = Iy, lo where the tractions are equal, too.

We consider two different scenarios, which result in two different models.
In the first scenario, the adhesive is considered as an elasto-plastic material
with lower modulus of elasticity, as compared to the rods. The adhesion
between the two rods is assumed to break down, or completely debond,
when the stress in the adhesive region reaches the yield limit.

In the second model we assume that the adhesive material undergoes
damage as a result of the strains. Then, complete debonding occurs when
the damage reaches the threshold limit.

We denote by p; and E;, for i = 0,1, 2, the density (per unit length) and
the elasticity modulus of the material in each region.

The classical formulation of the first model for the vibrations of two rods
in adhesive contact is:



Dynamic adhesive contact 87

Problem P,. Find a triple of functions (uy, ug, uz) such that, for 0 < ¢ < T

pruip(x,t) — Eruige(x,t) = p1fe(z,t), x € (0,1y), (1
pouort(x,t) — Eoupze(x,t) = pofp(x,t), x € (l1,12), (2
paug(x,t) — Eougge(x,t) = pafp(x,t), x € (lo, L), (3
u1(0,t) = ¢(t), uz(L,t) =0, (4

(ll, ) = uo(ll,t), Erui.(ly,t) = Egupz (11, ), (5

) Eougy(la,t) = Eougg(l2,t), (6

(7

(8

—_— — — — ~— — " —

Here, u;, and v;, are the (prescribed) initial displacements and velocities,
respectively, with the understanding that ui(z,0) = u;,(z) and uy(x,0) =
vin(z) for x € [0,1;], and similarly for the other two rods.

The problem consists of three coupled wave equations for the displace-
ments u(z,t), ug(z,t), and ug(x,t).

To describe the second model, we follow [11] (see also [10, 18, 22, 25] and
the references therein) and introduce the damage function ¢ = {(x,t), which
measures the pointwise fractional decrease in the strength of the adhesive
material. To describe the damage process of the material the damage-free
adhesive modulus of elasticity Fy is replaced with the effective modulus

E.ry = CEp.

Then, it follows that
0<((z,t) <1, (9)

and when ( = 1 the material is damage-free; when ¢ = 0 the damage is
complete and the system breaks at the point; and when 0 < {(x,t) < 1 the
material is partially damaged and has a decreased load carrying capacity.

Next, we need to describe the evolution of the damage function (. Fol-
lowing [10, 11, 22, 25] (see also the other references mentioned above), we
assume that the evolution of damage is caused by the growth of micro-cracks
and micro-cavities caused by the cyclic stress. The damage function has to
satisfy the growth equation

Ct - H’CCCI = (I)(Ca UOCC) + fa
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where, ® = ®((,up,) is the damage source function, which is described
shortly in (10), x is the damage diffusion coefficient, and £ is a ‘force’ that
prevents ¢ from violating (9). To describe the latter, we let I (0,1] denote the
indicator function of the interval [0, 1], and then its subdifferential is the set-
valued mapping denoteb by 91| j (z). To enforce the condition 0 < { < 1, we
require that —& € 91jp 11(¢). Indeed, when 0 < ¢ < 1 then § = 0; when ¢ = 0
then £ > 0 has the exact value that prevents { from becoming negative; and
when ¢ = 1 then £ < 0 has the exact value that prevents ¢ from exceeding
the value one.

General damage source functions can be found in [10, 22, 25]; here, we use
a somewhat simple function which depends only on the mechanical energy
EoCu?, and the damage process is assumed to be irreversible so that once
micro-cavities or micro-crack are formed, they do not mend, thus

D((, Uaz) = —d(Cuf, — €0)+- (10)

Here, d is the damage rate coefficient, ¢y is the scaled damage threshold
energy, below which there is no damage change, and (r); is the positive
part function, i.e., (r)x =7 if 0 < r and (r)y = 0 if » < 0. The negative
sign makes the process irreversible. With this choice, the parabolic equation
for ¢ (with £ = 0) predicts that if initially (;, < 1, then ¢ <1 for 0 < ¢.
For the sake of generality, we also assume that the adhesive has viscosity
which we model with v(Cugty)., where v is the viscosity coefficient, assumed

to be small.

Problem P;. Find a quadruple of functions (up,uo,(,u2) such that, for
0<t<T(1),(3),(4), (7), and (8) hold, together with

POUOtt(JU, t) - EO(CUOI)x(xa t) - V(C“Ot:p)x(xa t) = pOfB(xa t)? YIS (lla l2)7 (11)

Gt — Ko + d(Cup, — €)1 € =0 yy(¢),  w € (In,la), (12)

ui(l1,t) = uo(l1,t),  Eruiz(li,t) = Eo(Cuoz)(l1, ), (13)

U2(l2, t) - UO(Z27 t)a E2U2x(l2, t) — EO(C”OI)GQ? t)a (14)

C:E(llvt) :Ozgx(l%t)’ C(LB,O) :Cm(l?) (15)

Here, (;, is the initial damage, which has the value one in a damage-free
material.

The analysis of problems P; and P will be done in Section 4. Next, we

study the equations for the problems when the process is quasistatic and the
adhesive layer is thin.
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3 Quasistatic problems

We study three problems which model the process when it is quasistatic,
i.e., slow enough so that the acceleration terms may be neglected, and in the
absence of body forces (fp = 0).

3.1 Quasistatic version of P,

We begin with the quasistatic version of Problem P,;. Since there are no
body forces and the second time derivatives are neglected, the displacements
are linear. Writing

uo(,t) = a(t) + B(D), (16)

straightforward manipulations, using the facts that the displacements u; and
ug are linear and the boundary conditions (4)—(6), yield

—¢(t)

a(f) = (lo—l) + (L —1p) + 21y’ {7
and 5
B(t) = —« <l2 + (L - l2)EZ> (18)
Moreover,
(@, 1) = f?(l)a(t)w o), us(mt) = —g;)a(t)(L _a). (19)

We note that when the displacement ¢ is negative the system is under
tension and when it is positive the system is under compression.

In the limit when the thickness of the layer of glue tends to zero, s —
[y =1, we find that

—o(t) ( E0>
a(t) = , t)y=—all+(L-0)—].
O=mg oy E O L=
Thus, the influence of the adhesive enters via its stiffness Fy. The displace-
ment at x = [ is given by

o)L — D) Ey
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The stress by p(t) = Eiuiz(l,t) = Eoa(t) = Eauag(l,t). Therefore, this
system will debond (completely) only when the stress reaches the plasticity
yield or the debonding limit o*,

Epa(t) =o".

Clearly, this formulation cannot take into account gradual degradation of
the strength of the bonds as a result of cycles in ¢.

The quasistatic problem with a prescribe traction boundary condition
at x = 0 is straightforward to study, and is not very interesting, since in a
one-dimensional system the stress is uniform.

3.2 Quasistatic version of P

We turn to the quasistatic version of Problem P, which turns out to be
more interesting. In particular, it accounts for degradation of the strength
of the bonds as a result of cycles in ¢. Since there are no body forces and
the second time derivatives are neglected, the displacements u; and us are
linear. In equation (11) for ugp we neglect the viscosity term, and obtain
(Cupz )z = 0. Therefore,

C(x,t)'LLOI($,t) - ,Y(t)7 ll S T S 127 (20)
where 7(t) is to be determined. Then, the boundary conditions (13) and

(14) yield
Elulx(lly t) = EOV? E2u250(l27 t) = EO/Y

Thus,
B _ B
ulr(llat) - El V(t)a u2w(l27t) - EQ’Y@)?
and then,
E E
ur(@,t) = vtz +o(t),  ua(z,t) = — 2y (t)(L - 2).
El EQ
Next, integration in (20) yields
(@) =2) [ o oo (21)
u ‘,177 — ’7 $ b
0 A C(xv t)



Dynamic adhesive contact 91

for Iy < x < Iy, where 0 is a constant of integration. It follows from the
continuity of the displacements that

E
w(h, ) = (O + () = (),
l Eo iy -1 . dz + 6
_ - — = t .
tollet) = = GO~ ) =90 [ o do o+ 6(1)
Let 5 5
_ Lo Lo
C12 = E2 (L lg) + El ll.
Substituting ¢ from the first equation and rearranging yields
_¢ t
) P—. R— (22)
c1o + fll RED) dx
Then,
E Eolib(t
5(t) = 20 (0 + (1) = (1) g (1) (23)

= =7 - l )
Eq Ficio+ Ey flf @ dx

It follows that once ( is found, the problem is solved. To obtain (, we
note that ug, = /¢, hence

2
O(ugy) = —d(Cugy, — €0)y = —d (W - 60) = —d(0(¢;(,t) —€0),
+

where we defined

(1) |
¢ (012 + fllf C(almt) d$>2
Now, the problem for ( is the following.

Problem P,,,;_¢. Given ¢, find a function ¢ = ((x,t) such that, for 0 <
t<T,

O(¢;¢,t) =

Gt = Klea = —d(O(9; ¢, 1) —€0)y, € (In,12), (24)
((2,0) = Giny,  Coll1,t) = Galla,t) = 0. (25)
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We note that the problem is nonlocal since the source term on the right-
hand side of (24) depends on fl o dz. 1t is somewhat unusual and has
mathematical interest in and of 1tself and will be analyzed elsewhere.

Next, we consider the limit liml; = limly = [. It follows from the
boundary conditions (25) that ( = ((¢) only, as it does not depend on z.

Also, ,
lm  O(6:¢,1) = Op(C, 1) = L

ll2—l1]—0 (-
Therefore, the limit problem is as follows.
Problem Pgy. Find a function ¢ = ¢(¢) such that, for 0 <t < T,

2
¢ = —d <¢2<T) — 60> : (26)
€126 +
C(O) = Gin- (27)
The problem is a nonlinear ordinary differential equation with non-Lipschitz
right-hand side. We study it in Section 4.

We note that when ¢ is negligible, as compared to the average of ¢?(t)/c3,,
the equation for ( becomes

dg*(t)

0%25 .

(= —dOo(¢,t) = —

Using the initial condition, we obtain

) =G /¢2

It follows that the time to failure ¢ is given in this case implicitly by

s 2 cly zzn
; o (1) dr = o

A simple comparison argument shows that if t* is the time to failure of
the solution of (26) and (27), then ¢j < t*, as one would expect.

Problem P connects material damage and adhesion at the joint point
and it has a very different structure from the usual bonding conditions used
in the literature (see, e.g., [21]). Indeed, there, the bonding was assumed to
be of the form

¢ = —d¢(u} — €0)+,
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which doesn’t allow for failure, i.e., complete debonding in finite time, or a
more recent condition ([15])

(= —dCa(U§ —€0)+;

which allows for failure when 0 < o < 1. Here, we find that « = —2, and
this makes the analysis quite different.

3.3 Quasistatic version of P with traction condition

We describe briefly the case when instead of the displacement ¢, a trac-
tion ¢ = ¢(t) is applied at the left end (z = 0). This is often the case
in experimental settings. Thus, we replace the first condition in (4) with
F1u1,(0,t) = q(t). Then,

(e t) = g-alt)a + 0)

where b(t) is to be determined. At z = I; we have Fiui,(l1,t) = q(t) =
Epvy(t), hence
1
= —q(b).
7(t) EOQ( )
Moreover, ug(x,t) = (¢(t)/E2)(x — L). It follows from (21) that

for I < x <3, and § is a constant. The displacements’ continuity implies

dz + 6(t), (28)

l2
;lq(t)h +b(t) = 0(t), ElOQ(t) e dz + 6(t) = ;Qq(t)(b ~L).
It follows that
l2
510 = ) (s -+ o [ o) (29)
Also,
l2
b(t) = —q(t) <];1l1 + EL(L —ly) + ];O l C(; 5 d:c) : (30)
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It is seen that once ( is found, the displacements w1, us, and ug are given
by the expressions above. It remains to obtain an equation for (. We have

2
) = 0ok, — ) =~ (g o)

We conclude that the quasistatic problem for ¢, when a traction ¢ is
prescribed at x = 0, is the following.

Problem P,. Given ¢(t), find a function ¢ = ((z,t) such that, for 0 <t <

T7
2
Gt — gy = —d (i?é? — €0>+, x € (I1,1l), (31)
C(x,0) = Cin, Cul(l1,t) = Cu(l2,t) = 0. (32)

We note that this problem is local, but is also somewhat unusual and
has mathematical interest in and of itself, and will be analyzed elsewhere.
The problem for a thin layer of glue is obtained in the limit lim ls = [ = [.

Problem Py. Given ¢(t), find a function ¢ = ¢(t) such that, for 0 < ¢ < T,

c--s(3-1).

¢(0) = Gin- (34)

We note that whereas problems FPy,qs—¢ and P, are substantially differ-
ent, the limit problems Py and Py are very similar, with @/ Eg replacing
¢?/ciy. Therefore, the existence of the unique solution of Problem Prqo
follows from Theorem 1 below.

In this case, if we neglect the Dupré energy €y, we find that the time to
complete debonding ¢ is given implicitly by

tE E2¢2
2 dr = 0 0‘
/0 q°(r)dr d

4 Analysis

We first study Problem P, (26) and (27), and establish the existence of
a unique local (in time) solution. Then, we prove the existence of a weak
solution to the dynamic problem with damage, Problem F.
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4.1 Problem P

For the sake of generality, we replace the function ¢?(t)/c3, in (26) with a
more general nonnegative smooth and bounded function ¢ = (t). Then,
the problem is as follows.

Problem Pgy. Given a function 1, find a function ¢ = ((t) > 0, such that,

for0 <t <T,
¢ = —d (W - eo) , (35)
¢ +

¢(0) = Gin- (36)
We make the following assumptions on the problem data.

Hj. The function v : [0,T] — [0, 00) is continuous and bounded.
Hy. The constants d and ¢ are positive and (;,, € (0, 1].

Theorem 1. Assume that Hi and Ho hold. Then there exists T* > 0 such
that there exists a unique solution ¢ of Problem P¢y on the time interval
[0,T*). Moreover,

¢ e C(0,T)). (37)

Proof. Let 0 < a < (;;, and let g, ((,t) be a function with the graph of
a straight line through (0,0) and —d (@ — eg>, and let

F(G,1) = max (—d (W) - 60)+, o <c7t>) .

Then, F'((,t) is Lipschitz in ¢ and so there exists a unique solution to

Letting t} be the value of ¢ at which ( (¢) first equals a, then, since 0 < a is
arbitrary, the theorem follows when we choose 7% = sup(t}), for a € (0, (in).

4.2 Problem P

We turn to Problem P, and establish the existence of its weak solution. The
weak formulation is obtained in the usual manner, and we use the following
notation: u represents the displacements, and is such that u = uy on [0,1],
u = ug on [l1,ls], and u = wug on [ly, L]. Similarly, we define the functions
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p(x) and c(x) as p = p1,¢ = Ej on [0,01], p = po,c = Ep on [l1,l2], and
p = p2,c = Fyon [ly, L]. Finally, for the sake of generality we add a viscosity
term in (1) and (3), and let the viscosity v(z) be defined in the same way.
We also extend the definition of the unknown function ¢ as 1 outside of the
interval [l1,l2], and replace ¢ with ¢¢ in (1)—(3).

We now multiply equations (1)—(3) by a test function ¢, integrate by
parts and use the boundary conditions to obtain the following weak formu-
lation for u, for a.a. t € (0,7),

L L
| putep@ de + [ ew)i(e sl o) do
0 0

L L
+ [ v)sta e Ogu@) de = [ p(o) ol tpla) da.
0 0
Similarly, using 6 as a test function, we obtain from (12),

lo l2
Gz, t)0(x) dx + K Co(z, )05 (2) do

Iy Iy

l2
> —d/ (C(z, t)u(z,t) — €0) 2 0(x) da.

51
Actually, as explained below, we can eliminate the subgradient term because
the source term for damage is sufficient to keep the damage parameter in
the interval of interest.
We regard the adhesive and the two rods as a single continuum, as de-
scribed above, but damage is assumed to affect only the adhesive.
To proceed with the analysis we need the following spaces.

V=H}(0,L), H=L*(0,L),

and

V=,20,T;V), H=L2(0,T;H).

We use on V' and V the (equivalent) norms

9 L ) ) T L )
HwHV—/O wlds, kuv—/o /0 w2 dsdt.

We need to introduce a truncation to preserve the coercivity of the prob-
lem, which becomes noncoercive in the limit ¢ — 0. To that end we let n
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be a truncation function, assumed to be smooth and nondecreasing with the
following properties:

n(r)y<2ifr>1, n(r)=9ifr<d, n(r)=r ifre(20,1],

where § is assumed to be very small, in particular, § << gy. We note that
these problems, typically, possess only local solutions, so this is not a serious
restriction. Moreover, we show below that 7 is not active (i.e., n(¢) = () on
some interval of time.

Now, we define the operator A : V — V' as follows: for ¢ in H let

L
(A(G ) ,0) = /0 ¢ (@) (¢ (@) s () v, () da.

We note that ¢ (z) is discontinuous, and bounded away from zero, as it takes
the values E1, Ey, F5 in the different intervals. We also assume that

¢ € C?*([0,T]).

To obtain homogeneous boundary conditions at x = 0, = L we define a
new variable w (x,t) = u(x,t) — ¢ (¢t) (1 — /L) and obtain a similar equa-
tion for w involving only a change in fp (z,t), but with w satisfying zero
boundary conditions at © = 0 and x = L. Therefore, we assume at the
outset that ¢ (t) = 0 to make the presentation simpler. To slightly simplify
the presentation we also assume that the density p (z) is a constant, rescaled
as p = 1. In addition, we let

v(t)=d (1), v(t)eV, u(t)zuo—l—/ov(s)ds.

The truncated problem is as follows. Find v € V such that,

v+ A(C:’U) +A(C7u) = f, (38)
v(0) = wo, (39)
u(t) = wup +/0 v(s)ds, up € V. (40)

Here f is a body force, assumed in H. The problem for the damage is to
find ¢ € W12 ((0, L) x (0,7T)) such that,

(=AC = —d(n(C) Xy 1)@ (uz) — o) , (41)
¢(0) = ¢eH"(0,L), Colx)e (361 (42)
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We let (o(x) =1 for = ¢ [l1,12]. This forces the extension of ¢ to the rest
of [0,L] to equal 1. Then, the requirement ¢ € H' (0, L) guarantees that
¢ = 1 at the end points x = l1,l3, so damage is happening in the interior
of this interval but not at the ends. Also, we obtain the natural boundary
conditions (, = 0 at the endpoints of the adhesion interval.

Moreover, Qs (7) is a truncation of u,, making it easier to obtain some
of the estimates below. It is a bounded Lipschitz continuous function which
equals 72 whenever |r| < M, say

Qu € CH(R), 0<Q(r) < M. (43)

The characteristic function Xj;, 1, of the middle interval is used to guarantee
that the damage process is taking place only in the glue layer.

We show below that on a suitable interval the truncation is inactive but,
to begin with, it is convenient to include it. The source term for damage
in (41) is such that together with the assumptions on (p, it implies that
¢ (z,t) € (6,1] a.e. x for all t. It is a consequence of maximum principle
arguments and a proof can be found in [13].

We begin with the study of the mechanical part of the problem.

Lemma 1. Let ¢ € H. Then there exists a unique solution to (38) — (40).
Also, if v¢ 1s the solution corresponding to ¢ then the map ( — v¢ is contin-
wous from H to V.

Proof. We consider the existence part first. It follows from standard
theorems in Lions, [19], that there exists a unique solution v, to (38) for
each u € V. Also, the operator Av (t) = A(¢(¢),v (t)) is monotone, hemi-
continuous, bounded, and coercive as a map from V to V', so the the main
existence theorem in [16] is applicable. Consider now the map ¥ : V — V),
given by

W(u(t)) = uo+/tvu (5) ds.
Then, t 0
W(u (t)) = w (1) = /0 (v (5) — v (5)) ds.
Next, simple manipulations, using (38), yield

1 5 t t
S0 ) = v O+ 50 [ llow—vult ds < Cs [ Il = ulffas
0 0
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It follows that

19 (u(t) = T(w @) < CT/O [[vu (8) = vw (3)I[} ds

IN

t
CrCs [ u(s) = w s ds

0
and this implies that a large enough power of ¥ is a contraction mapping
on V, so there exists a unique solution (v,u) to (38)—(40).

Let (v,u) be a solution of this initial value problem. Then, it follows
from the equation that

1 5 0 [t
0 () i+ o [ 11l s
1 2 b b
S§Hv0HH+Ca ; ully, ds + C(f) + ; vl ds

t S t
g@¢//NmFMM+cume»+/uw%w
0 0 0

Here and below, we denote by C' = C(---) a constant that depends only
on the argument and the problem constants. It follows from Gronwall’s
inequality that there exists a constant, depending on the indicated quantities,
such that

t
o)1+ [ 1ol ds < € (juofy £ ol ). (44)

Next, we show the continuous dependence of the solution (v, u) on (. Let
v; correspond to (;,7 = 1,2. Then, from the initial value problem (38)—(40),
together with routine manipulations, we obtain

sl (0 =02 )+ 30 [ llon ()= )l s

t
<C%A(LMN@)—0@ﬂFWuFde

+%[;meﬂ—M@meVM%- (45)
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Assume that the map ( — v is not continuous. Then, there exists ( € H
and a sequence {(,} such that (, — ( pointwise, as well as in H, but for
some € > 0,

T
/ om (5) — v ()|[% ds > e,
0

where v is the solution of (38)—(40) that corresponds to ¢ and v,, corresponds
to (n. Now, let t = T and vy = v,,v; = v in (45). Since 7 is a bounded
function, the dominated convergence theorem applies and the right-hand
side of (45) converges to zero, which is a contradiction. This proves the
lemma.

The next two theorems are used below, and can be found in Lions [19]
and Simon [24], respectively.

Theorem 2. Assumep > 1,q > 1, and W C U C Y, where the inclusion
map W — U is compact and the inclusion map U — Y is continuous. Let

Sr={ue LF(0,T;W):u" € LU0, T;Y), ||ulloorw)+H W || Laory) < R}
Then Sgr is precompact in LP(0,T;U).
Theorem 3. Let W, U, and Y be as in Theorem 2, ¢ > 1, and let
Srr = {u:[[u@®)|lw + [[||Laory) < R, t€[0,T]}.
Then Sgr is precompact in C(0,T;U).

We now consider the question of existence for a solution (v, () of (38)
—(42). To that end let ¢ € H be given. Then, let (v¢,uc) denote the
unique solution of problem (38)-(40). Using ¢ and wu¢ in the right side
of (41) and (42), it follows from a well known results of Brezis ([5]), see
also Showalter (]23]), since the differential operator —A is a subgradient of a
proper lower semicontinuous functional, that there exists a unique function
e L? (O,T; H? (O,L)) ,& € H,(, =0 at x = 0 and L, which satisfies (41)
and (42). Let ® ({) = ¢£. Thus, this ® is a map from H to H. It was shown
in Lemma 1 that the map ¢ — v¢ is continuous from H to V. From the
definition of us as an integral of v¢ given in (40), it follows that ( — wuc¢
is continuous from H to C ([0,7];V). Therefore, since all the truncation
functions in the source term for damage in (41) are bounded and Lipschitz
continuous, it follows from simple manipulations, such as those above, that
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¢ — @ (¢) is continuous as a map from H to H. In fact, more can be said, but
this is enough for our purposes. We note the fact that ® is not only contin-
uous, but maps H into a compact subset of H. This follows from Theorem 2
and the following interesting lemma which is stated in more generality than
needed here.

Lemma 2. Assume that the boundary of Q is in CY'. Lety,y' € L?(0,T;
L*(Q)), y(0) = yo € H' (), assume also that y € L? (0,T; H* () and it
satisfies Oy/On = 0 on 0. Then,

t
1
/ J—
| 0 =80) 0y 45 = 519500 0 = 51V
Proof. Let Ly = —Ay, where y € D (L) is given by
{y e L*(0,T;L* (Q)) ; Ay € L* (0,75 L* () , Jy/On =0 on 9Q} .

Then, L is a maximal monotone operator. Also, since C§° (£2) is dense in
L*(9), it follows that D (L) is dense in L? (0, T; L* (2)). Let

Ye = (I+5L)_1y

for a small ¢ > 0. Thus, y. = (I +eL) 'y € D(L) and it is routine to
verify that

t 1 1
/0 (55 (= 92)) 12y 5 = 51V (1) [720y2 = 511V (0) 175

Moreover, since D (L) is dense in L? (0,T; L? (2)), it follows from stan-
dard results on maximal monotone operators (see, e.g., [5]) that, as e — 0,

~Ay.=Ly. =L(I+cL) 'y (I+¢L)™ ' Ly — Ly = —Ay,
(I+el) 'y = yl—y nI*(0,T;12(Q).

In addition,

Vy. = V({I+el) ty=I+¢el) ' Vy— Vy,
Vy (0) = V(I +eL)  yo=(I+eL)™" Vyo — Vo,
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and by using subsequences, if necessary, all these convergence results take
place for a.a. t. Therefore, for a.a. t,

1 1
§||vy (t) ”i%ﬂ)d - §||Vy0|‘i2(ﬂ)d

.1 2 1 2

' t
= lim (yé, —Ays)LQ(Q) ds = / (y’, —Ay)L2(Q) ds.
0 0

e—0

Now, using the fact the source term for damage in (41) is bounded inde-
pendently of ¢ and wu,, it follows from the lemma that

1 1/t 1
316 O+ 5 [ 1AC() s < G lcorlfy + € (00).

This estimate, along with (41), shows that ¢’ is bounded in H. Thus, we
obtain an estimate of the form,

112+ S () |2 +1/tm<<s> I3ds < 21V Gol% + € ()
H 2 x H 2 0 H =9 OllH .

Using now Theorem 3, it follows that the image ® (H) belongs to a compact
subset of C' ([0,7];U) C H, where U = H* (0, L), and a < 1 is large enough
so that the embedding of U into C ([0, L]) is compact. We conclude by
the Schauder fixed point theorem that there exists a fixed point of ® in
C ([0, T];U). This proves the existence part of the following theorem, which
is one of the the main results in this work.

Theorem 4. There exists a unique solution (v,u,() to problem (38)—(42)
and it satisfies:

veV, uwel([0,T];V), eV,

¢'eM, (e L>®(0,T;H" (0,L)) nL*(0,T;H*(0,L)) N C ([0,T];U).

For each t € [0,T]
C(x,t) €16,1] a.e. x.
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Proof. It only remains to verify the uniqueness of the solution. Suppose
that (v;,u4, (), for i = 1,2, are two solutions. We find from (38), using
simple manipulations involving the relation between u and v, that

Sl (0= O+ 5 [ 1o (9= v (0] ds

SR%A!KM@—(Mﬁﬁmmm(Wu®N3+0d& (46)

Now, using Lemma 2 again to the difference between the equations solved
by (;, we obtain

1 1 [
516 (0= G (O + 5 [ 18— ) s
t
KON [ (16 =Gl + e = uaely) ds.

Therefore, there is a positive constant C', independent of the solutions, such
that

t
Mu@—@AM@+AHQ—@@m@“

t s
<o [ (1o -Gl + [l - vl ar) as.
0 0

Similar, but somewhat simpler, computations using (41) yield

1 1/t
5160 =GO+ [ 16— Calhs

t S
SCA<M—@%+AHm—m@mym
160 -G O+ [ 116 - Gl s
1 2 7 0 1 211H2(0,L)

t S
<o [ (1a-aly+ [ o= wlfar) as
0 0

Therefore,
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We use (46) to substitute into this inequality and obtain

t
IMG%{AM@+AHQ—M%m@%

g%éOM@—@@%

+/OS (||(1 (r)— G (7")||2Loo(o,L) (H”l ("Il + 1)) dr) s

We let r < 2 be large enough so that H” embedds continuously into L*> and
by the compactness of the embedding of H? into H", if £ > 0 we find

16 (8) = G (B3 + /HQ ol (o.zy 5

t t
g@An@—m%w+@Aumw%@@w%

+/Os (HCl (r) = G2 (0.1 (Hvl (M3 + 1)) dr) ds.

Now, choosing € small enough,

16 (8) = G2 ()% + /m@ & IPron @

<C(de) /Ot /0 (Il ) = & M iriozy (Ilor (I +1) ) dras,

and by Gronwall’s inequality ¢; = (2, which implies by Lemma 1 that v; =
v9. This proves the theorem.

We note that the proof above implies the following corollary.

Corollary 1. Consider problem (38) — (42), then there exists T* > 0 such
that fort € [0,T*] the function ¢ in the solution provided in Theorem 4 stays
within the interval (20,1] so that every occurrence of n(¢) in (38 —42) may
be replaced with C.

Proof. It follows from the fact that ¢ € C'([0,7];U), where U embeds
continuously into C ([0, L]), and (p.
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5 Estimates on strain

In this section we remove the truncation @Qjs. Since the problem is one-
dimensional, it suffices to obtain an estimate for u in L*° (O,T; H? (O,L)).
We make additional assumptions on the problem data to obtain such an
estimate, which involves pointwise bounds on u,.

We assume the compatibility conditions on the initial data,

Ao — (CoXpy 1)@ (uoz) —€0) . € H' (0, L),

(cuosz), € H. (47)

Let £ = ¢’ and note that the time derivative of the source term in (41),
g (¢, vz) is in H. Therefore, there exists a unique solution to the problem

& —AE=g(¢ ),
€(0) = Al — (o, 1) Qs (woe) — Eo)Jr €H,

which satisfies ¢ € H, ¢ € L? (0, T; H? (0, L)) Then using Lemma 2, again,
we obtain, for a.a. t,

12 0) 1 = lI€ () 1 F < C (Co, Ao, uoz) - (48)
Similarly, an easier estimate for ||€ (¢) % is
¢=¢eL™(0,T;H (0,L)). (49)

Also, as above, we obtain an estimate on [|A&|[ 2o 7.p2(0,1)) Which yields
the pointwise estimate

HCHLOO(O,T;HQ(O,L)) < C (CO: ACO?“O:E) 3

which, in particular, implies that
HCmHLOO(o,T;Loc(o,L)) <C (CO: Ao, UOm) ’ (50)

since in one dimension H' (0, L) embedds continuously into L* (0, L). One
would need to work much harder if the problem were in a higher dimension.

We define the following time dependent family of functionals on H, which
are convex, proper, and lower semicontinuous,

L
& (t,u) = ;/0 c(z)((z,t)ul (v)dx fu€eV,

+ooifu gV
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Here, t € [0,T], and D (¢ (t,-)) = V is independent of ¢ because 6 < ¢ < 1.
Also, for u € V,

L
16 () =6 (s.0) 1 < 5 [ e@)C @)= C(s.0)] 02 (@) o

b L
< SIEO =@l [ o @da

b
< 5 ICO=C Gl 6 (20

t
SC’(Z)(r,u)/ HC’ (T)HVdT§C¢(T’,u) |t — s], (51)
where r € [0,T] is arbitrary and we used (49). Also, the subgradient of
¢ (t,-) is given by 0¢ (t,-) = — (c(-) C (-, t) ug),, and its domain is
{fueV:(c()¢( t)us), € H}.

Now consider (38)—(40) in which ( is the solution satisfying (49), thanks
to the compatibility condition (47) made on {y. We have the following.

Lemma 3. Assume that (47) holds and vg € V.. Then the solution to (38) —
(40) satisfies v' € H and (Cvg), € H.

Proof. Problem (38)—(40) is just an abstract form of the initial boundary
value problem

ve = (Cua), = (Ctia), = f, (52)
v(0,t) = wv(L,t)=0, (53)
v(0) = o, (54)
u(t) = uo+/0 v (s)ds. (55)

The partial differential equation is of the form

v — G (cvg) — ¢ (Cva:)x — (e (cug) — ¢ (Cu:r)x = f,

and when ((cv,), € H, it follows from the regularity of (, established earlier,
that (cvg), € H. Let W ={v eV : (cvy), € H} and

W={veV:(w,), € H}
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with the norm |[v[],y, = [[(cvz), |15

Let v1 € W and define u; (t) = ug + fg v1 (8)ds. Then, it follows from
the main existence theorem in [14] that, given such (, there exists a unique
solution v to the problem

UVt — (CC’UQ;)I — Czcuiz — ¢ (Culx)x
= v — G (cvz) — C(evz), — Geure — C(curz), = f,  (56)
v (0) = v,
which satisfies v; € H and ((cv,), € H. Denote this v by ® (v1). Then

consider v1,ve € W with the corresponding wuq, us. A similar argument as in
Lemma 2 implies that we can multiply both sides of (56) by

= (c® (v1),), — (= (e (v2),),)

and integrate by parts, eventually obtaining the estimate

FIVE @ 00), (0= @ (), ) I+ 5 [ 10 (1)), — (@ (wa),), s

<C [ @ (00), (5) = @ (), (5) s

e /0 leuss () — cuzs () [ + || (cura), (s) — (cuzs), (s) [3ds

where here and below C' = C (6, (o, Alp, uoz), and we used the fact ¢ >
and the pointwise bound on (, which follows from (50). After adjusting the
constants, this simplifies to

t
1@ (v1),, (1) = @ (v2),, () 172 +/0 H(c® (v1),), = (c® (v2),), IIFids

< [ @ (o), 5) = @ (), (5) s

t S
e / / | (cv1a), — (cvaa), |Zidrds.
0 0

Then,
1@ (v1),, () = @ (v2), () |17
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t t S
scv{/|w@<mjx@>—c¢aau<@n%ds+3/ [ o =y aras|.
0 0 0

and by Gronwall’s inequality and adjusting the constants, we obtain

1® (1), (1) — @ (v HH<q//um—MMW@

Now, integration over t yields

/||<I> v1) v2)|]st<C’// ||vl—v2\|Wdrds

where, as above C' = C (6, (o, Ao, oz )-

This estimate shows that a high enough power of ® is a contraction
mapping on W, so there exists a unique fixed point v for ®. This v is then
the unique solution to (52) - (55). However, by the uniqueness of the weak
solution to (38)-(40), it follows that v is the solution to the weak abstract
problem. Also, we note that the construction yields

cvg € L (0, T;H).
This proves the lemma.

Now, since (cCv;), € H, it follows that cCv, € L? (O,T; H' (O,L)) and
so cv, € L?(0,T;C ([0, L])), therefore

vy € L* (0,75 L% (0, 1)),
thus u, € C ([0,7];L*> (0, L)), hence,

This is the desired estimate on the strain which allows the elimination of
the truncation function @z, proving the following local existence theorem.

Theorem 5. Assume that the compatibility condition (47) holds, ug, (z) <
M on [0, L], where M s the truncation constant of Qs (43), and (o (x) €
(36,1]. Then, there exists T* > 0 such that, for t € [0,T%), the unique

solution (v,u, () of (38) — (42) satisfies n (¢ (t)) = ¢ (t) and
Qur (g (1)) &gy 1) () = u (£) Xy 1) (7).
In addition, this solution has the following reqularity,
(v, € L* (0,T;H' (0,L)), v €™M,
¢eC([0,7];H?*(0,L)), ¢" € L*(0,T;H*(0,L)).



Dynamic adhesive contact 109

6 Conclusions

Two models for the dynamic adhesive contact between two rods were pre-
sented. The first model assumes that the adhesive may be described as a
rod made of an elastic-plastic material and then complete debonding occurs
when the stress reaches the plasticity yield limit. In the second model the
adhesive is also assumed to be a rod and the degradation of the adhesive is
described by the introduction of material damage. Failure occurs when the
material is completely damaged, or the damage reaches a critical floor value.

The analysis of the first model is routine. The second model was shown,
in Section 4, to have a unique local (in time) weak solution. The proof was
based on truncation of the strain energy and the damage function in the
equation of motion. These allowed the use of standard tools to establish the
existence of a weak global solution. Then, it was shown in Section 5 that with
the appropriate initial conditions the weak solution is sufficiently regular so
that the constraints (the truncations) are inactive on a time interval [0, 7™),
which means that the solution of the truncated problem is also the solution
to the original problem.

Two quasistatic versions of the problem with material damage, with dis-
placement or traction boundary condition at x = 0, were investigated in
Section 3. The fact that the problems are one-dimensional allowed us to
obtain a new condition for the damage source function, leading to the same
and unusual parabolic nonlinear and nonlocal problem for the damage (,
Pyyas—¢ or Prq. The analysis of this problem will be done elsewhere.

In the limit when the thickness of the adhesive rod tends to zero a new
adhesion source function was obtained, see the right-hand side of (26), which
is unusual in that it contains ¢! which makes it non-Lipschitz, and different
from the source functions used in [1, 2, 10, 20, 21, 22|. The problem was
analyzed in Section 4.

Some future work, related issues, and unresolved questions follow. First,
it may be of considerable interest to verify the model by comparing its pre-
dictions with experimental results. In this manner the model parameters
may be estimated and then it may be used to predict the evolution of real
systems. Because of the relative simplicity of the problem, it may be used
as a bench-mark in applications, too.
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1 Introduction

When several small singular perturbation parameters of the same order of
magnitude are present in the dynamic model of a physical system, the control
problem is usually solved as a single parameter perturbation problem [18, 19,
21]; such a system is called a singularly perturbed system (SPS). Although
this is achieved by scaling the coefficients, these parameters are often not
known exactly. Thus, it is not applicable to a wider class of problems.
One solution is to use the so-called multimodeling systems approach (see
e.g. [1, 2,7, 21, 22]). In addition, a joint multitime scale-multiparameter
singularly perturbed system (MSPS) has been formulated [14, 23]. It should
be noted that these small parameters are of different orders of magnitude.

Stability analysis, control and filtering problems in MSPSs have been
thoroughly investigated. Multiarea power systems [1, 7] and passenger cars
[15, 17, 29] can be modelled as MSPSs, which are widely used to represent
system dynamics.

Since the investigations into the stability for the multimodel situation
in [3, 4, 6], much of the interest in linear quadratic (LQ) control has been
motivated by applications of the theory to multimodeling systems [1, 2, 12].
These interests in extending LQ control to dynamic games [5, 8, 9, 10, 13]
were revealed. An overview of multimodeling control may be found in [11].
The recent theoretical advances in multimodeling techniques allow a revisit-
ing of LQ control [49, 50, 52], the filtering problem [51, 54], the Hn, control
problem [48, 59], guaranteed cost control [56] and Nash games [53, 55, 57, 58].
A direct approach to the Lur’e problem for MSPSs has been proposed [27].
To extend the validity of continuous MSPSs, stability analysis, composite
state feedback control and Nash games have been considered for discrete
MSPSs [24, 25, 26].

In this paper, we present a survey of MSPSs in various control prob-
lems. Although many of the references consider deterministic problems,
stochastic cases are also reviewed here. First, the results of stability analy-
sis and the important related tests are given. After introducing the feature
of the multiparameter algebraic Riccati equations (MARE) that is based
on the LQ control for MSPSs, we discuss the two-time-scale design method
for cases where the singular perturbation parameters are sufficiently small
or unknown. However, iterative methods for finding the desired solutions
are discussed when such parameters are known. In particular, to avoid ill-
conditioned systems, the exact slow-fast decomposition method, recursive
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computation and Newton’s method are surveyed. It is shown that these
results are also valid for the filtering problem, H., control problem, guaran-
teed cost control and Nash games. Moreover, some new results for stochastic
systems that are governed by Ito differential equations are also discussed.
Finally, it is shown that the concepts and methods surveyed in this paper
can be exploited to solve the stochastic Hy, control problem for an actual
MSPS.

Notation: The notations used in this paper are fairly standard. block diag
denotes the block diagonal matrix. detM denotes the determinant of M.
vecM denotes an ordered stack of the columns of M. ® denotes Kronecker
product. ReA(M) denotes a real part of A\ € C of M. E[-] denotes the expec-
tation operator. The space of the R¥F-valued functions that are quadratically
integrable on (0, o) are denoted by L5(0, 0o).

2 Stability

A general frame-work for the stability of a MSPS is formulated in [1, 3, 4,
6, 7, 21, 22]. Stability is very important for a linear or nonlinear MSPS
when capturing the behaviour of the closed-loop MSPS. For a linear MSPS,
the sufficient conditions for uniform asymptotic stability have been derived,
and the asymptotic behaviour of the solution has also been investigated
by using the transformation [1] and the D-stability [3]. In contrast, it is
known that the Lyapunov method can be used to estimate the stability
of a system by using a Lyapunov function without solving the nonlinear
differential equations [4, 6]. The purpose of this section is to review the
asymptotic stability for several sufficiently small parameters. These results
are based on the asymptotic stability of a reduced-order slow system and
fast subsystems.

A linear system of strongly coupled slow subsystem and weakly coupled
fast subsystems is considered by (1).

N
B(t) = Agz(t) + Y Agjz(t), (0) =a”, (1a)
j=1

N
eiti(t) = Awz(t) + Auzi(t) + D eijAiyz(t), z:(0) =20, (1b)
=1, j#i
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where z(t) € R means the slow state vector. z;(t) € R™, i =1, ... |N
mean the fast state vectors. All matrices above are of appropriate dimen-
sions. The small singular perturbation parameters ¢; > 0, one per subsys-
tem, represent time constant, inertias, masses etc., while the small regular
perturbation parameters €;;, ¢ # j represent weak coupling between the
subsystems.

The following result is well known for the stability of linear MSPS.

Lemma 1. [1] If ReA(4;) <0,i=1, ... ,N and ReA(A;) < 0, then there

exists a positive scalar o1 such that
z(t) = xs(t) + O([e]), (2a)
t
ailt) = —A5 A0 + 55 (L) + O(lel (2b)

€

hold for all t € [0, o0) and alle € H, 0 < |e| < o1, where

2
622[51 -+ EN €12 - EN(N,l)]E%N,

H .= {66%]\[2

£ Eij _ -
j . ij

mij S S Mij, mi; < — = M;j,
(2 (2

mg; > 0, my; > 0, Mij < 00, Mij < OO},
N
is(t) = Agxs(t), A= A=)  Agj A7 Ajo, 2ip(t):=Aiizif(t),i =1, ... , N.
7=1

As an important implication, the following result is given for the stability
of an uncertain MSPS.

Lemma 2. [52] Let us consider uncertain MSPS

i(t) = [Fo + O(leDlx(t) + [For + O(JeD]=(t), #(0) =2, (3a)
Iez(t) = [Fro + O([e])]x(?) + [Fy + O(leD]=(2), 2(0) = =

where

I, := block diag ( e1ln, -+ enlny ), 2(t) =] 21 (t) -+ 2% (t) ]T,
Fof:: [F01‘ . ~F0N],Ff02: [Fljg] . -F}GO}T,Ff::block diag(Fll- . 'FNN)v
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x(t) € R and z(t) € R™, i =1, ... ,N are the state vectors. All matrices
above are of appropriate dimensions.
IfFy,i=1, ... ,N and F = Fy — Zjvzl FQijgleg are stable, then

there ezists a positive scalar oo such that for all t € [0, co) and all e € H,
0 < |e| < o2, uncertain MSPS (3) is asymptotically stable.

Asymptotic expansions of the solutions as well as the problem of expo-
nential stability of the zero state equilibrium of a singularly perturbed linear
system with several small parameters of different orders of magnitude may
be found in [39], see also Chapter 3 in [40].

At the end of this section, sufficient conditions are stated to guarantee
the asymptotic stability of a class of nonlinear SPS with several perturbation
parameters of the same order. Now, let us consider the nonlinear MSPS given

by (4).

(1)
II.4(t)

)+ F(t, x)z(1), (4a)

f(t
g )+ G(t, z)z2(t). (4b)

(t

We assume that the following conditions are satisfied for all z(t) € S,
where S, is a closed set in ™ containing the origin and for all ¢ > .

, X
, T

(a) x(t) = 0 is the unique point in S, for which f(¢, 0) = 0 and g(¢, 0) = 0.

(d) f,g9,F,Gandh:=G (¢, x)g(t, =) are bounded and satisfy the neces-
sary smoothness requirements for existence, uniqueness and continuity
of the solution of (4). Moreover, G(¢, x) and h(t, x) have bounded
first partial derivatives with respect to ¢ and x(t).

(c) There exists a positive definite Lyapunov function V (¢, z) such that

Vi+ Vafo(t, z) < —k®(x), |VoF(t, o) < roto(a),

|7t + ha fo(t, @) < K39p(2),

ov oV

fo(t, x) = f(t, ) — F(t, z)h(t, x), V;:= T V= £
Oh oh
hy .= —, hy = —,
LT ot o

where 1(x) is a positive definite function of x(t), k1, k2 and k3 are
positive scalars.
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(d) The real parts of the eigenvalues of II-1G are strictly negative, that
is ReA(TIZ'G) < —7 < 0 for all € € H, where 7 is a positive scalar
independent of ¢, x and e.

The asymptotic stability of equation (4) is established in the following
basic lemma.

Lemma 3. [6] Under conditions (a)-(d), there exists a positive scalar o3
such that for all e € H with 0 < |e| < o3, the origin x =0, z = 0 is an
asymptotically stable equilibrium point of (4).

It should be observed that in practice, Lemma 1 is included in Lemma 3
as a special case.

For the problem of exponential stability of a singularly perturbed linear
system with state delays we refer to [16] and [41].

3 Linear Quadratic Regulator (LQR) Problem

The solution of a LQ regulator (LQR) problem is usually given in the form
of state feedback control. Indeed, the LQR technique was used to solve
the active suspension control problem [29]. In this section, we discuss the
LQR problems from the point of view of the reduced-order technique and
numerical aspects. These results will be covered as the extension of SPS
[18, 19, 21].

3.1 Two-Time-Scale Decomposition

When the small perturbation parameters ¢; are not known, a popular ap-
proach to deal with the MSPS is the two-time-scale decomposition method
(see e.g. [1, 21]). In practice, since ¢; is very small or unknown, the previous
technique is very efficient. First, the LQ control problem for the MSPS was
studied by using composite controller design [1, 2]. In [2], the resulting near-
optimal controller has been proven to have a performance level, i.e. O(|¢]),
where |e| denotes the norm of the vector € := [g1 --- en], close to the
optimal performance level for the standard and nonstandard MSPS. How-
ever, one major drawback of this method is that the fast state matrices A;;
are invertible. Indeed, if this condition holds, we cannot obtain the reduced-
order slow subsystems. To avoid the invertibility assumptions, the descriptor
systems approach [28] can be used. The descriptor systems approach will
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be discussed later as a nonstandard MSPS. Although the descriptor systems
approach can still be used for general MSPSs, the two-time-scale decomposi-
tion method is recommended in this case because the fast state matrices are
invertible in most practical systems. Some properties of the two-time-scale

decomposition method are described next.

We consider a specific structure of N-lower level multi-fast subsystems in-
terconnected through the dynamics of a higher level slow subsystem [1, 7, 52].

N
B(t) = Agx(t) +ZAom >+ZBOjuj(t>, z(0) = a°,

Eiéi(t) = AZ()IL'( ) + A”ZZ( ) + Biiui(t), ZZ(O) = ZZQ, 1= 1,

where u;(t) € R™i, i =1, ..., N are the control inputs.

It should be noted that all fast state matrices A, i = 1, ...,

invertible. The performance criterion is given by

1 [ N
Y GO0 # 2o OR0) | (6)
where

N

ity =[2T(t) ) - L) ] €eRY, a=>n,
i=0

Qu @ Y
Q = cTo = [ Q%; Qoff ] , Qoo = C(%FCO = ;C%Cjo,
Qo =CoCr=[Qu -+ Qo] =1[ChCu - CL,COnn ],
Qs = CfCy=block diag ( Q11 -~ Qnn ) =

block diag ( CLC11 -+ CHyCwn ),
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Coo
Cho
C = [Cy Cp], Cy = : ;
Cno
0 00 0
Cn 0 0 --- 0
Cf = . . . . . 9
0 00 --- Cpyn
R = blockdiag( Ry -+ Ry )
Let the optimal control for the L(Q control problem (5) and (6) be
Uopt(t) = Koptg(t) = _R_lBZPf:{(t)v (7)
where P. satisfies the MARE
P6A€+A3PE_PES€P6+Q:07 (8)
with
A . Ao AOf
° It Ap TIAf |7
T
Ao = [An - A ], Apo = [ Al o AR ]
Ay = block diag( Aip - Ann ),
S, SofII;!
o —1pT _ 00 orllz
Sc = BRTB = [ 'Sy, Ths,rst |
N
Sw = BoR'Bj = Y ByR;'Bj,
j=1
Sof = BoRT'Bf = [Sou - Son | =
[ BuRi'Bf, -+ BonRy'By ],
Sy = ByR'Bf = blockdiag( S11 ‘- Snn )=
block diag ( Bi1R;'Bf; -+ BynRy'Bhy ).
B
B. = [H;lOBf]’ By == [ B -+ Bon |,

Bf = block diag( Bll BNN )
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However, we cannot solve the MARE (8) without the knowledge of the small
perturbation parameters €;. When ¢; is very small or unknown, the two-time-
scale design method [1, 52] is very efficient.

According to [1, 7], the near-optimal closed-loop control is given by

Uicom(t) = —[(Im; — Ry 'BE X, A Bi) Ry YD Cio + BE Xoo)
+RIBEX ;A Apla(t) — Ry IBLE Xyi2i(t), i =1, ..., N, (9)
Whel“e Boi = Boi — AoiA; Bii, Cio = Cio — Ci A Ajg, Ry = R; + DI'D;,
C’L’LA 1B’L’L

In the above Xoo is the unique stabilizing positive semidefinite symmet-
ric solution of the following algebraic Riccati equation (ARE)

Xoo(As — B,R;7IDTC,) + (Ay — BsR;7IDTC )T Xog —

—XooBsR; ' BI X0 + CT(I; — DsR;* DT C, = 0, (10)
where
Ry = R+ D] D, By = By— AgsA;'By =
[ By — AnAy'Bir -+ Bon — AonANNBwn |
Cs = Co—CrA; Ajg = [ Cfy  (Cro— CiApf Aro)”
_ T
(Cno — OnNARNAN)T]
0 . 0
. CllA 'Byy - 0
Ds:—CfAf By =— . :
0 - OnnAyyByN
X, i =1, ..., N are the unique stabilizing positive semidefinite solution of
the following AREs
XiiAii + AL Xii — X53S: X + Qi = 0. (11)

It is well known from [1] that the controller (9) is identical with the following
controller

Uicom (t) = —R; ' BE Xoox(t) — Ry BE Xjox(t) — Ry 'BL Xiizi(t),  (12)
where X0, 1 =1, ... ,IN are

X} = [Xoo(S0iXii — Avi) — (AL X + Qoi)] (Asi — SiiXai) L. (13)
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Furthermore, the composite controller ucom (t) = [ Ucom(t)T - Uncom(t)T ]T
can be rewritten as the following composite controller

Xoo o o0 -- 0
X0 X171 0 .- 0

ucom(t) = Kcomg(t) = _R_IBT . . .. . f(t) (14)
Xnvo O 0 - Xnn

Theorem 1. [1] There exists a positive scalar 1 such that for alle € H with
0 < |e| < a1 the closed loop MSPS (5) is asymptotically stable. Furthermore,
the use of the composite controller (14) results in Japp satisfying

li Jeom — Jopt) = 0, 15
i o) (15)

where Jopt = ET(0)P-£(0) and Jeom = ET(0)W.£(0) with
We(Ae + BeKeom) + (Ac + BoKeom) W + KL REKcom + Q = 0.

According to Theorem 1, the detailed cost degradation has not been
established. This property is described in a subsequent section.

3.2 Matrix Riccati Equations

The multimodel strategies for the LQ control problem are given in terms of
Riccati or Riccati-type equations, which are parameterized by several small
positive perturbation parameters. The existence of a unique and bounded
solution to the MARE (8) was first shown in [13]. This important result is
summarized as follows.

Since the matrices A; and B, contain the term of 5;1, a solution P. of
the MARE (8), if it exists, must contain terms of ¢;. Taking this fact into
consideration, we look for a solution P. of the MARE (8) with the structure

[ Puw P%Ha T
P, = Py, 1P | Pyo = Py,

Pfo = : ,
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[ P 2Pl ausPh - anPE, i
Py Py agg P, - aon Py
Py = ; : ) ’
Pn-1y1 Piv-1)2 Pv-1)3 N-1)N Py (nv-1)
L Pm Py Pys Py i
II.P; = P/ L.

In order to guarantee the existence of the reduced-order ARE and its
standard stabilizability and the detectability conditions when || — +0,
Assumptions 1 and 2 are needed.

Assumption 1. The triples (A, Bii, Cy), i = 1, ... ,N are stabilizable
and detectable.

Assumption 2.

SIn — Ao —A()f B(] :| _
rank 0 =N, 16a
[ —Ap —Ap By (162)

shyy — AY =A%, 1
rank [ _A()Tf —A? CJ? =n, (16b)

with Vs € C, Re[s] > 0.

Before investigating the optimal control problem, we investigate the
asymptotic structure of the MARE (8).
The MARE (8) can be partitioned into

f1 = P&;AO + AEPOO + P%Afo + ACJZ;OPfO — PgE)SOOPOO —

—P}E)Sfpfo — ng)sofpfo — P%Sg;cpoo + Qoo =0, (17&)
fo = AJPII. + AL Py + Pio Aoy + PloAs — PioSoo Polle —
— PS¢ Pl — Py Sor Py — PSPy + Qoy = 0, (17b)

fs =P} Ap+ AT P + T, Ppo Aoy + AL PRoTI. — P} S, Py
—Pf 8§ Pl — Py Sos Py — - PpoSoo Pfolle + Qf = 0. (17c)
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It is assumed that the limit of o;; exists as €; and ¢; tend to zero (see e.g.,
[1, 2]), that is

&j

Qijj = lim Qi = lim - (18)
EjH+0 Ej~>+0 E;
g;—+0 g;—+0

%, 1 =1, ..., N are nonsingular. Sub-
stituting the solution of (17¢) into (17b) and substituting P}‘O into (17a)
and making some lengthy calculations (the detail is omitted for brevity), we
obtain the following zeroth-order equations (19)

Assumption 1 ensures that A;; — Sy P

PjyA+ ATPy — PSPy +Q =0, (19a)
P}y = —Nj + N[ P, (19b)
D* T p* D* %
where
A = Ag+ NiAg+ Sor Ny + N1SyNY
S = Soo+N15&c+ngNf+N15fN?,
Q = Quo— NaAgy— ANy — NySyNy
Py = [PT - P )", P; = block diag ( Py, - Piy ),
Pyt = —[PyDoi + (AP + Qi) Dy
PiA;+ ALP: — PiS;Pi4+ Qi =0, i=1, ... ,N,
P A _ _1 1T T
NlT = _AfTAOTf = [_D01D111"'_D0NDN§V] = [Nll"NlN]
T A = = T
Ny = AfTng = [ QuDu -+ QonDnn | = [Na -+ Noy
Agf = Aof—S()fP; = [D01 DON]a
Af = Af—SfP}k = blockdiag(DH DNN)7
Qoy = Qos+A}PF = [ Qo -+ Qon |,
Doi = Aoi — Soily, Dii == Ay — SiuPy,
Qoi = Qui+ALP; i=1, .. N.

In the following we established the relation between the MARE (8) and the
zeroth-order equations (19). Before doing that, we give the results for the
AREs (19).

Y

]T

)
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Lemma 4. [52] Under Assumptions 1 and 2, the following results hold.

(i) The matrices A, S and Q do not depend on P}, i =1, ... ,N. That is,
following formulations are satisfied.

A -8 N
[ CQ AT } = Tho —;TojTjj Tjo, (20)
where
e[ 4, S )me[ 4 ]
Tio := [ _Aéogi :i%Ti ] y Tii = [ _Aéi“ :iZTZ ] ,i=1, ...,N.
(ii) There exist a matriz B := [ Bo1 + N11By1 -+ Bony + NinByny ] S

RWXM = Zjvzl m;j and a matriz C with the same dimension as Cy
such that S = BR™'BT, Q = CTC. Moreover, the triple (A, B, C)
is stabilizable and detectable.

Remark 1. Note the relation

T--::[A” —Sul:{fm 0}{1% _Sii:|[lm 0]

' —Qii _Ag; P Iy, 0 _Dg —P; I,

Since Ty; is nonsingular under Assumption 1 and the ARE (19¢) has a stabi-
lizing solution under Assumption 2, D;; is also nonsingular. This means that
Ti;l can be expressed explicitly in terms of D;l. Using the similar manner,
we have the following relations.

N L A IR
" P; Ini 0 —D; _P;; Ini

Theorem 2. [13, 52] Under Assumptions 1 and 2, there exists a positive
scalar Go such that for all e € H with 0 < |e| < g2 the MARE (8) admits a
symmetric positive semidefinite stabilizing solution P. which can be written
as

(21)

P — o, [ By +O(lel) [Py + O(le)] I, }

Pry+O0(leh)  Pr+0(leD)
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Py +O(lel) [Py + O(le))" L
IL[PF + O(lel)]  He[Pf +O(leD] |

where ®. = block diag( Iy eiln, -+ enlny )

This result can be easily extended to the other multimodeling-type ARE
(see e.g., [48, 51, 53]). The cross-coupled MARE is discussed later.

3.3 Nonstandard MSPS

If one of the fast state matrices A;, j = 1, ... , N is singular, the MSPS is
called a nonstandard MSPS. In such a case, we cannot utilize the two-time-
scale decomposition technique.

Recent theoretical advances in the descriptor system approach allow a
revisiting of the various control problems [28]. Since the feedback controller
in such problems can be expressed by solutions of the reduced-order and
parameter independent AREs, the resulting feedback is derived without in-
vertibility assumptions.

We focus on a specific linear state feedback controller which does not
depend on the values of the small parameters. Our methodology is different
from the methodology of [1]. This design method is based on the descriptor
system approach. If || is very small, it is obvious that the optimal linear
state feedback controller (7) can be approximated as

%
venn(®) = Kat(t) = =175 | 0 5|, (22

where

_ _ - I
Poy=[P; —In, |T;'To [ J_%"(; } .

Theorem 3. [52] Under Assumptions 1 and 2, the use of the approzimation
controller (22) results in Jopp satisfying

Japp = Jopt + O(||5||2), (23)
whereJapp = £ (0)U-£(0) with

Ue(Az + BeKapp) + (Ac + BeKapp) U + K, REapp + Q = 0.
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The following theorem gives a relation between the composite controller
(14) and the approximate controller (22).

Theorem 4. [52] Under Assumptions 1 and 2, the following identities

Xii = Py, Xio = Pjy, Xoo =Py, i=1, ... ,N (24)
hold. Hence the resulting composite controller (14) is the same as the com-
posite optimal controller (22).

It can be observed that the new near-optimal controller (22) is equivalent
to the existing one [1] in the case of the standard and the nonstandard
MSPSs. We claim that the proposed controller (22) includes the composite
near-optimal controller [1] as a special case since the proposed controller can
be constructed even if the fast state matrices are singular.

3.4 Numerical Algorithms

In order to obtain the optimal solution to the multimodeling problems, we
must solve the MARE, which are parameterized by the small, positive pa-
rameters €;, ¢ = 1, ... , N, which have the same order of magnitude. Various
reliable approaches to the theory of ARE have been well documented in many
literatures (see e.g. [32, 33]). One of the approaches is the invariant subspace
approach, which is based on the Hamiltonian matrix [32]. However, such an
approach is not adequate for the MSPS since the workspace dimensions re-
quired to carry out the calculations for the Hamiltonian matrix are twice
those of the original full-system. Another disadvantage is that there is no
guarantee of symmetry for the solution of the ARE when the ARE is known
to be ill-conditioned [32]. It should be noted that it is very difficult to solve
the MARE due to the high dimension and numerical stiffness [18, 19]. To
avoid this drawback, various reliable approaches for solving the MARE have
been well documented. Three types of numerical algorithms are presented
in this paper: the first one is the exact slow-fast decomposition method, the
second is a recursive algorithm and the third one is Newton’s method.

3.4.1 Exact Slow-fast Decomposition Method

The exact slow-fast decomposition method for solving the MARE has been
tackled in [15]. In order to simplify the notation, N = 2 is summarized [15].
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Let us consider the nonlinear matrix algebraic equations.

T11Ly — Tio — e1L1(Too — Tor L1 — Toa Lz + ToaL3L1) = 0, (25a)
Tys Lo — a12L3Tio — Tag — e2L2(Too — To2L2) = 0, (25b)
TysLg — a12L3T11 — eaLa(Tor — ToaL3) = 0, (25¢)
—H1Tv — e1H1 L1 (Tor — ToaL3) + (To1 — To2L3) +e1(Too —  (25d)

—To1L1 — Toa Lo + To2LsLy)Hy =0,

—HyTos + ai2Th1Hay + e2Ly (Tor — To2Ls)Ha + (25e)
+(L1 — eaHaLo)Tp2 = 0,
—H3Tyy — e9H3LoTyo — e2(Tor — ToaLz) — To2 + €2(Too — (25f)

—To1 L1 — Too Lo + Toe L3 L1)Hs = 0.

These equations can be solved by utilizing the fixed point iterations for L;
and H;, i = 1, 2, 3 [15]. On the other hand, reduced-order pure-slow and
pure-fast asymmetric algebraic Riccati equations are derived as follows.

Psa1 — agPs — ag + PsasPs = 0, (26&)
Pf1b1 — b4Pf1 — b3+ Pflbgpfl =0, (26b)
Procy — c4Ppy — c3 + Praca Ppa = 0, (26¢)
where
a a
[ L ] = Too — TorL1 — Too Lo + Toa L3 L,

as aq

by by 1 C2

b be | = Ty1e1L1(Tor — TooL3), = Too + €2 LoTpo.

3 4 C3 C4

It should be noted that unique positive semidefinite stabilizing solutions
exist for the asymmetric AREs defined in (26) exist. These solutions can
be obtained by using Newton’s method. It is well known that Newton’s
method converges quadratically under appropriate initial conditions. In fact,
this important feature has been proved in [15]. Using the above results, the
following matrix is defined.

H::|:H1 1T

_ T
I, II, ] =F5 KEy, (27)
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where

Ino —e1H1Lq 4+ e1e9H1HoLg + e9H3Lo

K = Ll - €2HQL2
Lo
—e1Hy +e1eo9H1HoLg + 9 Hsg Lo 62(H3+€1H1H2)
I, —e2HoLg —eoHy ;
L3 Ing
(I, 0 0 0 0 0
0 0 0 Iy, 0 0
b | 0 Lu 0 0 0 0
1o 0 0 0 'L, O ’
0 0 I, 0 0 0
L 0 0 0 0 0 &', |
(I, 0 0 0 0 0
o o0 0 I, 0 o0
B | 0 w0 0 0 0
’ o 0 0 0 I, O
0 0 I, 0 0 0
. 0 0 0 0 0 I, |

Finally, we can express P. in terms of Ps, Py and Pjo.

P. = [Qs + Q4 - block diag( Ps Pr1 Ppo )}

[ + Q- block diag ( P, Py Ppp )], (28)

where

ol Q|
0[BT

However, these results are restricted to the MSPS such that the Hamiltonian
matrices for the fast subsystems have no eigenvalues in common (see e.g.,
Assumption 5, [17]). Thus, we cannot apply the technique proposed in [15]
to the practical system.
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3.4.2 Recursive Computation

Now, let us define ¢ := |e| = y/£% + €3. The solution (21) of MARE (8) can

be changed as follows.

Poo+¢Eon  e1(Pio+ ¢Ew0)"  ea(Pao + ¢E0)”
P. = | e1(Pio+ ¢Er0) e1(Pr1+ ¢En) $*Eg, ;o (29)
e2(Pao + ¢E0) ¢ En e2(Pa2 + 0 E»2)

T T T

The O(J¢|) approximation of the error terms E,, will result in O(|]?)
approximation of the required matrix P,,. That is why we are interested
in finding equations of the error terms and a convenient algorithm to find
their solutions. Substituting (29) into (17), we arrive at the recursive algo-
rithm.

DLE!™ + BV Dy,

2
9 — — n n 3 n n
= *;}(Dapfo + PioDo1) — e1(DLEQT + EX) Doy + Elpfo)soopfo a
+er(BYSH PR + P SuEY) + er/an(ByY T SHPET +

+ P S ESVY + ¢(EM S BN + 0y ST 800 ESY), (30a)

DLES™ + Byt Dy

2
6 D — n n 6 n n
_ —i(D&PQT() + PyyDoy) — e2(DHLEST + ESW Dyy) + ﬁpgo)soopz(o )T
€2
V 12
n n n n 1 n n
+ P S0 ESIT) + ¢ (ESy) S ESy) + OTHE&)SHE&)T), (30b)

n n)T
(E§1)SOT1P2(0) +

+ea(BYy SHPWT + Py S ESy) +
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nT (n+1)T
,ﬁE"* D22+—D E,
V/447
“1p0D 2pT pr _ o E™p pL g P g, B
% 10 02—5 01Pa0 — €18,y Dog — e2Dy1 By +e1(Pyg’ So2Egy” +

n T n)T
\/?Pfo)SmE&) )+52(E§1)501 20 ‘|'v0‘1 E( N 502P2( ) )
5182

¢ 2P S0Py + o(var B SnEyy (30c)

1 n)T n)T
+\/TTE§1) shEST,

DTEég-l-l) + E(n+1)D
—Dj Dl H(gl) Ho(l)D_11D10 D3, D5, H(gz)
+¢( 00 SOOE((]O) + E§o) So1Eq (n) + E(()O)S E(n)

+EMTST B E(”>SO2E§O> + EWTSTEM 4 BT 6, B0, (30d)

— HY D3, Dyg

20
ECIT = (g - B Do) DY, i =1, 2, (30¢)
where
n n g — n
q" = —pLEMY — ar; DL BT ngOToplTO — e, DL EWT

+¢( 00 SOlE(n) +E§0) SllEn ) + ¢v/ar2 (Eoo 502E§1)
(n) SZZEél)) +e1(E (n)SOO + E§o) Sy + Eéo) Sg2) P _1(0 )T=

n n+1 n+1 &2 = n)T
H52> — DR ELT — —a DLEGIT - Do — ey DY ESY)
+ OB Sa sy + Esy) T S ESy)) + \/gb—(Eéo)SmEén)T

BT SHEST )+52(E( 'So0 + + BT 5§ + BT S8 Py
PI(O) = Puy+ 0By, Py = P+ 0EY),
B8 - 5 = 5 = 59 = £ = 50 =0
The following theorem indicates the convergence of the algorithm (30)

Theorem 5. [49] Under Assumptions 1 and 2, there exist the unique and
bounded solutions E,, of the error equation in a neighborhood of |e| = 0
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Moreover, the algorithm (30) converges to the exact solution E,q with the
rate of convergence of O(|e|™), that is

|Epg — ESV| = O(le|™), n=1, 2, ..., pg =00, 10, 20, 11, 21, 22. (31)

However, there exists the drawback that the recursive algorithm con-
verges only to the approximation solution [49] since the convergence of the
recursive algorithm depends on the zeroth-order solutions.

3.4.3 Newton’s Method

In this section, we develop an elegant and simple algorithm which converges
globally to the positive semidefinite solution of the MARE (8). The algo-
rithm uses the Kleinman algorithm [33], which is equivalent to Newton’s
method. Thus, this paper presents important improvements upon some of
the results of [15, 49] in the sense that one need not assume that the Hamil-
tonian matrices for the fast subsystems have no eigenvalues in common.
Moreover, the convergence solution does not depend on the initial guess,
and quadratic convergence is attained.
We propose the following algorithm for solving the MARE (8)

(A — gpr)T pintl) o prtD)T (4 _ gpM)y 4 p(ITgp) L g =0, (32)

/i = 07 ]-7 27 ey Ps(n) = (pEP(n) — P(n)T(pE7
Py ep” af pT
pn) — Pl(g) Pf?) _—_pWT L, A=3. A, S =3.5.9,

oL 2!
20 Va21ly 22
with the initial condition
1?00 e1P 1T e P

PO = Pro P 0 ; (33)
Py 0 Pss

where P, pg =00, 10, 20, 11, 22 are defined by (19).
The algorithm (32) has the feature given in the following theorem.

Theorem 6. [50]/ Under Assumptions 1 and 2, there ezists a positive scalar
a1 such that for alle € H with 0 < |e| < &1 the iterative algorithm (32) con-
verges to the evact solution P} = ®.P* = P*T®_ with the rate of quadratic
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convergence, where Pg(n) = &, P = PMTS,_ s positive semidefinite. More-
over, zero-order solution P©) is in the neighborhood of the exact solution P .
That is, the following conditions are satisfied.

— 2”’,6.[/ ) ) ) ) )
1
|PO — P < ﬁ[l —V1-—26], (34b)
where
L:=2|5| < oo, f:= |[VF(Py)]™']. 0 := L
with
[ VeCF()() i
vecFyg
VeCF20
ni=B-IF(P), F(P)i= | Voo |,
VeCF21
| VeCF22 |
Foo Fiy Fi
ATP+PTA-PTSP+Q=| Fiy F FL |,
Fao Fo1 Fo
and
[ vecPy | [ VeC]?()O i
vecP10 VGCPlO
_ OF(P) | vecPy vecPag
VE(P):= opPT ’ P= vecPyp |’ Po = vecPyq
vecPo; 0_
| VeCP22 | L VeCPQQ |

These proofs can be derived by applying the Newton-Kantorovich theo-
rem [34, 35].

It should be noted that the proposed algorithm, which is based on the
Kleinman algorithm, has quadratic convergence. It may also be noted that
to solve the multiparameter algebraic Lyapunov equation (MALE), a fixed-
point algorithm can be combined. See [50] for details. In addition, it has
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been proved that the resulting O(|e|?") accuracy controller achieves the cost
n+1
Jopt +O(||€”2 )

Remark 2. Using the Newton-Kantorovich theorem [34, 35], which will be
presented later in this paper, it is clear that there exists a positive scalar
a9 such that for all e € H with 0 < |e| < &2, the MARE (8) has positive
semidefinite solutions within the limits of the sufficiency condition. More-
over, it should be noted that the asymptotic structure of (21) can also be
obtained by applying the Newton-Kantorovich theorem.

4 Extension to Other Problem

The above-mentioned techniques can be demonstrated for the filtering and
the various control.

4.1 Filtering Problem

Filtering problems for MSPS have been investigated extensively. In [51], a
new design method for the near-optimal Kalman filters has been proposed.
As a result, the high-dimensional ill-conditioned MARE is replaced by the
low-order singular perturbation parameter-independent ARE. Furthermore,
the proposed filters can be implemented even if the fast state matrices are
singular and the perturbation parameters are unknown. In [12], the well-
posedness of multimodel strategies for a LQ-Gaussian (LQG) optimal control
problem has been studied. In addition, numerical stiffness is avoided by us-
ing the exact slow-fast decomposition method for solving the filtered MARE
in [17]. The local control problem of a control agent of the above paper is
obtained by neglecting the fast dynamics of the other agent’s subsystem, and
each agent uses the optimal solution of its local control problem. However,
the nonsingularity assumptions for the fast state matrices A;;, i =1, ... ,N
are also needed. To avoid this drawback, a new recursive algorithm for solv-
ing the MARE has been proposed [54]. It has been proved that the solution
of the MARE converges to a positive semi-definite stabilizing solution with
the rate of convergence of O(||¢|"*!), where i denotes the number of required
iterations. Moreover, it has been recently proved that the resulting Kalman
filter achieves a performance level, i.e. O(|e|*"*1), close to the optimal mean
square error.
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4.2 H_ Control Problem

The asymptotic expansions for MARE with a sign-indefinite quadratic term
that arises in the H,, control problem and an iterative technique for solving
such MARE are described in [48]. In [59], a new iterative algorithm for
solving MARE with a sign-indefinite quadratic term has been proposed for
the general case. The proposed algorithm consists of Newton’s method and
two fixed-point algorithms. As a result, it has been proven that the solution
of the MARE converges to a positive semi-definite stabilizing solution with
a rate of convergence of O(|e|?"). Moreover, compared with the existing
results [48], a reduction in the size of the computational work space can
be achieved even if the MSPS has many fast subsystems. This algorithm
for solving the MARE and MALE is applied to a wide class of control law
synthesis methods involving a solution to the MARE, such as in the robust
stabilizing control problem. On the other hand, a reliable H,, control for
linear time-invariant MSPS against sensor failures has been investigated [30].
The main contribution of this paper was an extension of the previous study
of the reliable H,, control.

4.3 Guaranteed Cost Control Problem

The multi-parameter singularly perturbed guaranteed cost control problem
has been demonstrated [56]. By solving the reduced-order slow and fast
AREs, the new e-independent guaranteed cost controller can be obtained.
The new technique has the following advantages: It does not need informa-
tion on the small parameters ;. The required work space is the same as that
of the reduced-order slow and fast subsystems. The present new results can
be applied to the MSPS without the need for the various assumptions that
have been made for the fast subsystems in the existing results, although the
fast subsystems have the uncertainty. Therefore, the new design approach
has been successfully applied to a more practical uncertain MSPS. Further-
more, if the parameters are known, we can obtain the exact GCC by using
the above-mentioned numerical technique. As another important approach
to the uncertain MSPS except for the guaranteed cost control problem, the
fault diagnosis of two-time-scale MSPSs has been considered in [31].
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5 Nash Games

The LQ Nash games for the MSPS have been studied by using composite
controller design [5, 57, 58]. Furthermore, a decentralized stochastic Nash
game has been presented for two decision makers controlling MSPS [8]. Ac-
cording to this result, in order to obtain near-equilibrium Nash strategies, the
decision makers need only to solve two coupled low-order stochastic control
problems. Furthermore, decentralized team strategies for decision makers us-
ing MSPS have been developed [10]. The well-posedness of the multimodel
solution was demonstrated. Recently, computational approaches for Nash
games have been studied [53, 55, 62]. For obtaining the strategies, Newton’s
method [55] seems to be very powerful tool. In this section, existing and
recent progress on the use of the two-time-scale decomposition method and
numerical analysis related to Nash games for MSPSs will be reviewed.

5.1 Parameter Independent Strategies

Consider a linear time-invariant MSPS

N N
z(t) = Agz(t) + Z Angj (t) + Z Boju; (t), =(0) = .TO, (35a)
=1 =1

eizi(t) = Apz(t) + Auzi(t) + Biui(t), z(0) =20, i=1, ..., N,(35b)

with the quadratic cost functions

1 o0
Ji(u, ... ,un) = 2/ [%Tyz + UZTRiiui]dta (36a)
0

yi = Ciox + Ciizi = Ci&. (36b)

These conditions are quite natural since at least one control agent has to
be able to control and observe unstable modes. Our purpose is to find a
linear feedback strategy set (uj, ... ,uj ) such that

Ji(uy, ., uy) < Ji(uy, s wiog, ug, uipq, ., uy), =1, .., N(37)

The decision makers are required to select the closed loop strategy u;, if they
exist, such that (37) holds. Moreover, each player uses the strategy u; such
that the closed-loop system is asymptotically stable for sufficiently small ;.
The following lemma is already known [36].
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Lemma 5. There exists an admissible strateqy such that the inequality (37)
holds iff the cross-coupled multiparameter algebraic Riccati equations

(CMARES)

T
N N
Pi. |A: — Z Sjgpjg + e Z Sjana Pic + PicSie Pic + Qz =0, (38)
o =1
1 =1, ... ,N,have solutions P > 0, where
Pi1o
[ Poo Pl  _pl p :
Pie := [HgPifO m.py | Fo0 = Poo B 2
Pino
[ P oa12Ph oasPh, arn Pl |
Pio Pias aggPLy - aon Py,
Py = : : : : ;
Pyn-n1 Pinv-12 Piv-n3z - O‘(Nfl)NPg]ﬂv(N_l)
Pin1 Pino Ping -+ Pinn A
" By | Bio [ Bon |
B : 0
By:=| 0 |, Bi:=| By |, ,By:= 01,
| 0 ] 0 | BN |
Sie == ®'B;R;;' Bl ¢,
Sioo O Sioi O
O O O O
S; := B;R;;'B; ST 0 Su O
O O O O
Qioo O Qini O
O O O O
= 00T = 7
Qz 14 %z 0] Qm 0
O O O O
®,. := block dz'ag( Iny eiln, -+ enlny )

Then the closed-loop linear Nash equilibrium solutions to the full-order prob-
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lem are given by

uf(t) = —Rj;' BLP:E(1). (39)
It should be noted that it is impossible to solve the CMARE (38) if the
small perturbed parameter ¢; are unknown. Thus, the purpose of this section
is to find the parameter-independent Nash strategies.
The parameter-independent Nash strategies for the MSPS will be studied
under the following basic assumption.

Assumption 3. The Hamiltonian matrices Ty, i = 1, ... N are nonsingu-
lar, where
A —S.
Toei i i [ ] 40
" [ —Qiii —AZ; ] (40)

Under Assumptions 1-3, the following zeroth-order equations of the
CMARESs (38) are given as |¢| — +0.

T
N N
Pioo (As = > Se,Pjoo| + [As =D Ss; Pioo| Pioo + (41a)
7j=1 7j=1
+Pi00Ss, Pioo + Qs, = 0,
Al Piii + Piii A — PyiiSiii Pisi + Quii = 0, (41b)
Py =0, k>1, Pijj =0, i #j (41c)
= T
5 B 5 Py 1 Ing 0 -+ 0
Pio Powo -+ Py | = Tl | 20 _
[ 110 17210 NlO] |:_In1:| 1114110 00 Paoo -+ Poo |
= T
5 B 5 Pago 1 0 Iy, -~ 0
Pioo Py - Prnao | = T Toso| o o _
[ Przo Poxo oo | [—Im } 2272200 Prog P -+ Proo

L _ Pnvan] 0 0 -1
[Pivo Pano- -+ Pnno| = [_A}NN] TN}VNTNNO[PmO P200"-P;(())0] , (41d)

nN
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where
N
As * o AO * -1
[ « AT ] = [ « AT ] —;TiOiTiiiTn’o,

* —Ss, _
[ % ] = Tioo — Ti0iTy5; Tiio,

Q. x iii
Ao —Sioo Aoi —Sioi A —Sipy;
’ —Qioo —Af o —Qui —Af |7 " —Qh —Af |’
i=1, ...,N.
The following theorem shows the relation between the solutions P; and the
zeroth-order solutions Py i =1, ... ,N, k>1, 0<k, [ <N.
7/1? @ Ing+1In, ® AT B —(55213190) ® Ing—1In, ®A(Ssgp100) e
dot —(Ss; P200) ® Ing—1Ing ® (Ss; Paoo) AT @ I, +1,, @ AT
€ . .

—(Ss, Prnoo) ® Ing —Ing @ (Ss; Pnoo) —(Ssy Pnoo) ® Ing —Ing @ (Ssy Pnoo) « -

x —(Sle?loo) R Ing—1Iny ® (Sst?loo)
coo = (SsnP200) @ Ing —Ing ® (Sspy Paoo)
: : #0, (42)
AT @ I, J.rlno ® AT

N
where Ag := A; — Z Ssjpjoo and Ag are stable matrix.

j=1
Theorem 7. Suppose that the condition (42) holds. Under Assumptions 1
and 2, there is a neighborhood V (0) of |e| = 0 such that for all |e| € V (0)
there exists a solution P; = Pi(e1, ... ,en). These solutions are unique in a
neighborhood of P; = P;(0, ... ,0). Then, the MARE (38) possess the power
series expansion at || = 0. That is, the following form is satisfied.

[Pgo 0 -0 0 0 -0

P 0--0 0 0 -0

COE L o). (43)

Pie:=®:P, Bi=Pi+ Olel=| 5 o ... g B 0 ... 0

Prxo 0 -0 0 0 -0
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5.2 Numerical Algorithms

When the parameters represent small unknown perturbations whose values
are not known exactly, the previously introduced composite design is very
useful. However, the composite Nash equilibrium solution achieves only a
performance level of O(|e]), close to the full-order performance. Another im-
portant drawback is that since the closed-loop solution of the reduced Nash
problem depends on the path along €1 /g3 as || — +0, we cannot conclude
that the closed-loop solution of the full problem converges to the closed-
loop solution of the reduced problem [2]. Therefore, as long as the small
perturbation parameters ¢; are known, much effort should be made towards
finding the exact strategies which guarantees Nash equilibrium without ill-
conditioning. In this subsection, the iterative algorithms for solving the
CMARESs are summarized.

5.2.1 Recursive Computation

A recursive algorithm for solving singularly perturbed Nash games has been
attempted [53]. It has been shown that the recursive algorithm is very
effective in solving the CMAREs when the system matrices are functions of a
small perturbation parameter ;. However, the recursive algorithm converges
only to the approximation solution because the convergence solutions depend
on the zeroth-order solutions. In addition, the recursive algorithm has the
property of linear convergence. Thus, the convergence speed is very slow.

5.2.2 Newton’s Method

In order to improve the convergence rate of the recursive algorithm, we
propose the following algorithm which is based on the Newton’s method.
(I)(n)TP(n-i-l) + P(n—l—l)T(I)(n) _ @(n)TP(n+1)J o JP(n—l—l)T@(n) + E(n) =0,
n=0,1, ..., (44)

n)

(I)gn)TPI(n—&-l) + Pl(n—i-l)Tq)gn) . an)TPén—i—l) . P2(n+1)T@gn) + Eg — 0,
¢gn)TP§n+l) + P2(n+l)Tq)§n) . an)TPI(nJrl) . Pl(nJrl)T@gn) + E;n) — 0,

where

M .=4A - SPp" — gSPMJ = n)
(I)2

™ 0 ]
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~ (n)
om.=ggpn — | OO
=2M.—Q 4+ PSP 4 gpMWTSypr) + pMT g5pM) g
= o
o =Y
BT E
B I it R I e ™
L Po0i Pori Doy Os0i Os1; Ogy
[ =) =) =)
o | o
=T So1g Ei; S |0 t= L2
=(n)T =T  (n)
L —02¢ —12¢ =221
P
P .— 1 7
o0 R
r n n)T n)T
- Pliog 81]3(1(18 52P1(23( -
n)._ n n -1 n
Py P1(10 Py ) Vazi Pryy ’
L Plgo \/0421P1(21 P1(g2)
B n n)T n)T
) PQEOO €1P(2(1§ 52P2(23( -
n n n —1 n
Pyi= P2(10 P211() \/0‘21(])3221 ’
L Pagy  /o21Payq Pass
Ao A 0 A Ql 0 & . S1 0
A=l A],Q._[ ! QQ},S =1 52],
J:= Iq I(;_Z],A::(IJEAE.
and the initial condition P has the following form
_El[)o 817]51710 62?120 0 0 0
Piio P 0 0 0 0
po) _ P 0 _ [P0 O 0 0 0 0
o pY 0 0 0 Pyo e1Pfy 2Py
0 0 0 13210 0 _O
L 0 0 0 Py 0 Pazo

(45)
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Note that the considered algorithm (44) is original. The new algorithm
(44) can be constructed by setting Pt — p) 4 AP™ and neglect-
ing O(AP™TAP™) term. Newton’s method is well-known and is widely
used to find a solution of the algebraic equations, and its local convergence
properties are well understood.

Theorem 8. Under Assumptions 1-3, the new iterative algorithm (44) con-
verges to the exact solution P* of the CMAREs (38) with the rate of quadratic
convergence. Furthermore, the unique bounded solution P™ of the CMAREs
(38) is in the neighborhood of the exact solution P*. That is, the following
conditions are satisfied.

[P™ — P < O(le[*), n=0, 1, ..., (462)

”P(n) _P*” < BE [1 _ \/1_72(5]7 n=20,1, ..., (46b)

where

P 0
0 Py
i = |[VE@PO) - [FPD)].

p:pn:[ ],i:mﬁmﬁ:[vnp@nw,@zﬁb

6 Stochastic MSPS Governed by It6 Equations

The various control problems for stochastic systems governed by Ito’s dif-
ferential equation have attracted considerable research interest. The stabi-
lization, LQ optimal control and H,, control problems for singularly per-
turbed stochastic systems (SPSS) with state-dependent noise were investi-
gated [37, 43, 44]. Although these results are very elegant and despite it
being easy to obtain a controller, the multiparameter singularly perturbed
stochastic systems (MSPSS) remain to be considered. The problem of ex-
ponential stability of the zero state equilibrium of a linear stochastic system
modeled by a system of singularly perturbed Ité differential equations is
investigated in [20, 37, 42],

The LQ optimal stochastic control problem for MSPSS in which N lower-
level fast subsystems are interconnected through a higher-level slow subsys-
tem has been investigated [60]. The stochastic H, control problem for the
MSPSS has been discussed [61]. In particular, a new iterative algorithm for
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solving the stochastic multimodeling algebraic Riccati equation (SMARE)
that has sign-indefinite quadratic form has been proposed. Stochastic Nash
games have been studied for stochastic multimodeling systems [62]. The
main contribution of this paper is the new strategy set that is independent
of the small parameters. In [63], the guaranteed cost control problem for
MSPSS has been re-formulated as an extension of [56].

In this section, the numerical solution to the SMARE with a sign-indefinite
quadratic term related to the stochastic H,, control problem with state-
dependent noise is investigated. It may be noted that a similar technique
can be used for several stochastic control problems [60, 62, 63].

We consider the following MSPSS that consist of N-fast subsystems with
specific structure of lower level interconnected through the dynamics of a
higher level slow subsystem.

M
dé(t) = [A€(t) + Beu(t) + Dev()ldt + > Apeb(t)dwy(t),  (47a)
p=1
2(t) = [ gi((?) ] : (47D)
where
0 il
£(t) = : eR" wu(t) = : e R™
ZN'(t) un ()
o) ]
u(t) = : e R
| on(?)
N N N
n an, m = ij, l —Zl],
Jj=0 j=1 j=1
Ape = [H = 0 Huép(ﬁpf]a Apop = [ Apor - Apon ],
Appo = [Afw A;}FNO ]T7
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Dy

D, = |:H6—1Df ], Dy := [ Doy -+ Don |,

D; := block diag( D11 -+ Dpyn ),

H := block diag( Hy1 -+ Hpyn )
vi(t) € lei (0, 00), i =1, ..., N is considered to be an unknown finite-energy
deterministic disturbance [45, 46]. z(t) € R? is the controlled output. £; > 0,
i=1, ..., N and p > 0 are small parameters and 6 > 1/2 is independent of
€ :=min{eq, ... ,en}. It should be noted that the parameters y and ¢ have

been introduced in [43, 44] for the first time. Moreover, the considered
MSPSS consists of N-fast subsystems as compared to [43]. wy(t) € R,
p=1, ..., M is a one-dimensional standard Wiener process defined in the
filtered probability space. Note that one of the fast state matrices Ay,
i1 =1, ..., N may be singular.

Remark 3. In stochastic problems, careful treatment is required to establish
the validity of the multimodel problem [11]. In addition to the usual difficul-
ties encountered in modeling a fast stochastic variable, the problem is rether
involved due to the presence of information patterns. To simplify this aspect,
the scaling parameter u is considered.

Without loss of generality, the stochastic H., control problem for the
MSPSS is investigated under the following basic assumption [45, 46].

Assumption 4. H'H = I,.

It should be noted that the matrix pair (F, G) is deemed stable, if
d¢(t) = E&(t)dt + GE(t)dw is asymptotically mean square stable [46].

The stochastic Hy, control problem for MSPSS is given below [45, 46].

Given a constant v > 0, find a matriz K satisfying the following condi-
tions:

i) The system

M
dE(t) = [Ae + BKJE(t)dt + ) Apct(t)dwp(t) (48)
p=1

is exponentially mean-square stable (EMSS) internally, i.e. it satisfies
the following equation.

E[E0)I? < pe " IE[E(s)P, 3p, v > 0. (49)
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ii) The closed-loop system

M
d(t) = [(Az + BeK)&(t) + Dev(t)dt + Y Apel(t)dwy(t), (50a)
p=1

0= 4 | € (500)

corresponding to the system in equation (50) with feedback control u(t) =
KE(t), satisfies following condition.

3 B> CTc«t) et
sup 3 = sup T T <92 (51)
e ko, oo),HUHQ v e L0, oo, Ef v t)dt
#0, £(0)=0 v #0, (0) =0

The following result is well known [45, 46].

Lemma 6. Suppose that Assumption 4 is satisfied. The stochastic Hy, state-
feedback control problem has a solution if and only if there exists a symmetric
non-negative definite solution Z. to the following SMARE

M
G(Z.) = AL Z. + Z. A+ > AL Z.Ape
p=1
~7Z.(B.B =42 D.DIZ. + CTC =0 (52)

such that the stochastic system

M
dé(t) = [Ac = B:BI Zo + 42D DI ZJ¢(t)dt + ) Apel(t)dwy(t) (53)
p=1

is EMSS.
The controller solving this Hy, problem is given by equation (54).

u(t) = KE(t) = —BI Z:£(t). (54)
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6.1 Asymptotic Structure of SMARE

In this section, we need to first analyze the asymptotic structure of SMARE
(52) to obtain the controller. In order to simplify the presentation, the
following matrices are defined.

Soq S'OfAﬂg_l
H;lson -tS,act |

Sof = [SOI S(]N ], Sf := block dlag( S’ll SNN )

S. := B.B'—~472D.DF =

Let Zoo, Zgo and Z; be the limiting solutions of the above SMARE (52) as
uw— +0,e; = 40, 1 =1, ..., N, then we obtain the following reduced-order
equations (55).

M
ZQOAO + AgZOO + Z};OAfO + A?()Zfo + Z Ag(]OZOOApOO
p=1

—Z00So0Zoo — Z oSt Z g0 — ZooSorZgo — Z oS0 Zoo + Qoo = 0, (55a)
A?OZf + ZooA[)f + Z?OAf - Zoos()fo - Z?OSfo + Qof =0, (55b)
Z?Af+A?Zf—Z?Sfo+Qf:0, (55¢)

First, the following AREs are introduced.

ZiAi+ AL Z,

— 75925+ Qu =0, i=1, .. ,N. (56)

Moreover, let us define the following sets.
I'y, = {y > 0| the ARE (56) with S;; = BiiBg —’y*QDiiDZZ; has a positive
semidefinite and stabilizing solution Z}}, i =1, ... ,N.

Assumption 5. The sets I'y, are not empty.

Lemma 7. Under Assumption 5, the asymmetric ARE (55¢) admits a unique
symmetric positive semidefinite stabilizing solution Zy which can be written
as

Zj :=block diag ( Z}, --- Zyy )- (57)

Assumption 5 ensures that A;; — S'iiZi*i, ¢ =1, ..., N are nonsingular.

Substituting the solution of (55¢) into (55b) and substituting Z}o into (55a)
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and making some lengthy calculations, we obtain the following zeroth-order

equations (58).

M
Z% A AT = 7% 7% Q7 ~
ZooA+ A Zy + E Ao Z0 A0 — Z508 25 + Q = 0, (58a)

p=1
- . S I
Zz’OT = [ Zii *Ini ]T” 17—%0 |: ZZO :| s (58b)
00
ZiAii+ AL 25 — 2556 25 + Qui = 0, (58¢)
751 «T 1T
where Z%, = [ Z3¢ zZh
A -8 I
SR =Too — > To; T T,
-Q —A" 00 ]; 07555 +30
; Ao —5'00} 2 [ Ay —Soi ]
T = 5 T s i= ,
o [—Qoo —Af o —Qoi —Al
. As _S8T . A -G, '
Ty = 30 0 :| , T = |: i 73 :| Q= 1’ ,N.
10 |: B %; _A%; i1 _Qii _Az“
Remark 4. For each i € {1, ... ,N} equation (56) is a Riccali equation

arising in connection with the deterministic Ho, problem. Hence, if I'y, is
not empty then 'y, = (v, 00). On the other hand, if v € I'y, then the matric
A — gllZ;‘ is a stable matrixz. Therefore the hamiltonian Tm 1s invertible.

The ARE (58¢) produces a positive semidefinite solution if +y is sufficiently

large. Hence, let us define the set.
I's = {y > 0f the SARE (58a) has a positive semidefinite and stabilizing

solution Zg,}.
We introduce the assumption:

Assumption 6. The set I's is not empty and it has the form I's = (ys, 00).

Remark 5. a) In the considered general case it is not clear how the co-
efficients A, S’, Q are depending upon ~y. That is why we have to
introduce as an assumption the fact that the set 'y takes the form of
a right unbounded interval. It is worth mentioning that this happens if

all matrices A;; are invertible.
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b) The fact that Z3, is the stabilizing solution of (58a) means that the
trajectory x(t) = 0 of the Ité differential equation

M
dx(t) = [A — SZgo|a(t)dt + > Apoox(t)duwp () (59)
p=1

is EMSS. Thjs s equivalent to 7the fact that the Lyapunov operator
X - [A-SZ}) "X + X[A - SZ;) + Z;\il Ag(]OXAPOU are located in
the half plane ReX < 0. This means that (59) is true.

The limiting behavior of Z. is described by the following theorem.

Theorem 9. Under Assumptions &5 and 6, if a parameter v > 7 :=
max{Ys, Vfi, - ,Vfn} 15 selected, there exists a small o* such that for
all |v| € (0, o*), the SMARE (52) admits the unique symmetric positive
semidefinite stabilizing solution Z. for stochastic system (47) which can be
written as

Z. — ®. [ Zso +O(Iv])  [Z50 + O(lv)T I ]

Zi+0(vl)  Zp+Oo(v

_ [ Zy+ OVl [ Zo + O(v])] L ]
L[Zj +O(lvD)]  W:(Z;+O(v])] |’

whereu::[sl e EN p]E%NH.

It should be noted that there is no solution of to the SMARE (52) as
long as there are no positive semi-definite solutions Z; to the SARE (58c).
Conversely, the asymptotic structure of the solution to the SMARE (52) can
be established by using the reduced-order solution Z;; of the SARE (58c)
via an implicit function theorem. Therefore, the existence of the reduced-
order solution Z; of the SARE (58¢c) will play an important role in this
study. In this case, it is easy to verify that the magnitude of the disturbance
attenuation level ~yy, influences the existence of the reduced-order solution
Zi;. In fact, when 7f, tends to zero, it is hard to obtain the reduced-order
solution Z;; except for the special case. Finally, the problem considered in
this study is restricted for the disturbance attenuation level 7y, such that
the reduced-order SAREs (58c) have the solutions Z;.
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6.2 Newton’s Method

Let us consider Newton’s method (61).

Zén—l—l) (Aa o Sfaze(n)) + (AE . SvEZgn))TZén—l-l)

M
+> ALz A, + 2SS 2 +Q =0, (61)
p=1
where n =0, 1, ..., and the initial conditions are chosen as follows.
20— g [ Zo0 Zigle | g 5 62
e T F¢& Z;O Z;E — reH ( )

Using the asymptotic structure of (60), it should be noted that the initial
condition is chosen as (62).

The algorithm represented by equation (61) has the feature given in the
following theorem for the MSPSS.

Theorem 10. Suppose that Assumptions 5 and 6 are satisfied. If the
parameter-independent reduced-order SARE (58¢c) has a positive semidefi-
nite solution, there exists a positive scalar & such that for all e € H with
0 < |e| < &, the iterative algorithm represented by equation (61) converges
to the exact solution of Z. with a rate equal to that of quadratic convergence;
here, Zg(n) 1s positive semidefinite. Moreover, the convergence solutions equal
those of Z. in the SMARE (52) in the neighborhood of the initial condition

Za(o) = ®.7. In other words, the following condition is satisfied.
(20)*"

|28 - Z| = oL =0([v|*), n=0, 1, ..., (63)

wher:e ) X K o
i- 2||S€(l| < o0, B = ||[OVG(Z€(0))]*1||, 0=pnL <27 i =
IVG(ZEN 1 - 1G(Z7).

7 Simulation Example

In order to demonstrate the efficiency of the stochastic H., control for
MSPSS, we present results for practical multiarea electric energy systems.
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The state variable model of the megawatt-frequency control problem was
developed in [47].
In developing the state space model, the following basis equations were

used:
APiei = > _Tj, (/Afidt - /Afvdt> :

2H; d
APy — APy = T*Z%Afi + DA fi + APei,
d 1 1
AP = — = AP+ —AX i
dt qi T, gi T T, quis
d 1 1 1
—AX i = —— AX i — Af; AP,;.
dt gui Tgvi gui TgviRi fi+ Tgm‘ ci

Some system parameters used in our study are referred to [47] for details.
For a two-area MSPSS, the following state, control and disturbance vari-
ables can be defined.

E(t) := [ [APjerdt [Afrdt Afy [Afadt Afo APy APp|AXg|AX gy

=[2(t) | 2(t) | 2t) ]",
u(t) = [ APCI APCQ ]T, U(t) = [ APdl Apdz

]T

]T
The following system data were used for the numerical calculation.

P,y = Py = 2000 [MW], Hy = Hy =5 [sec],
Dy = Dy = 8.33 x 1073 [puMW /Hz],

Ty = Ty = 0.3 [sec], Ty1 = 0.030,

Tyv2 = 0.029 [sec], 67 — 05 = 60 [degree],

Ry = Ry = 2.4 [Hz/puMW], f* =60 [Hz|,
T}, = 0.315 [puMW], AP = 0.1 [puMW].

0 0.315 0 —0.315 0 0 0
0 0 1 0 0 0 0
0 —1.888 —0.0498 1.888 0 6 0
Ap=]0 0 0 0 1 0 0 ,
0 1.888 0 ~1.888 —0.0498 0 0
0 0 0 0 0  -3333 0
0 0 0 0 0 0  —3.333
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0 0
0 0
0 0
Aot = 0 ;» Aoz = 0 ;
0 6
3.333 0
L 0] | 3.333
4 _[0 0 041666 0 0 00
"7loo 0 0 —041666 0 0 |
[0 0 0.41666 0 0 0 0
Az = 00 0 0 —0.41666 0 0 } > Au = A =1,
Aqgo = block diag ( 0 0 0.00249 0 0.00249 0 0 ),

Aj1p = A0 =0 € RVT, Ay = Aj1o = A1a2 =0, Bo1 = Bpp = 0 € R7,
Bii=1,Byy=1Duy=[00 —06 00 0 0],
Die=[0000 =060 0]", Diy =Dy =0,

() = block diag (17 0.2513) .

The system matrices are given by the top of this page. It is assumed that
time constant of the governors represents the small singular perturbations.
Hence, small parameters are Ty, := €1 = 0.030 and Tg,2 = €2 = 0.029.
Moreover, it should be noted that y = 0.

It should be noted that the deterministic disturbance distribution v(t) :=
[AP;; APgp]T = [0.1 0.1)7 and the state-dependent noise related to the
load frequency constant [47] are both considered compared with the existing
results [48, 49]. We suppose that the error in the load frequency constant
is within 5% of the nominal value. Therefore, the proposed design method
is very useful because the resulting strategy can be implemented on more
practical MSPSS.

For every boundary value v > %4 := max{vys, vf, 7} = 2.2608¢ — 1,
the SMARE (52) has a positive definite stabilizing solution because the
AREs (55¢) and the SARE (55a) have a positive definite solution, where
Vs = 2.2608¢ — 1, vp, = vp, = 00.

Now, we choose v = 0.3 (> ¥) to solve the MSARE (7). The efficiency of
Newton’s method (61) is demonstrated. It is easy to verify that algorithm

(61) converges to the exact solution with an accuracy of |G (Zgn)) | <1.0e—11
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after five iterations.

Table 1. Errors per iterations.

n |G(Z™)]
0 1.5667

1 4.2489¢ — 01
2 3.3631e — 03
3 2.0470e — 05
4 1.5710e — 11
5 9.1508¢e — 12

In order to verify the accuracy of the solution, the remainder per iteration
is substituted as Z™ into SMARE (52). In Table 1, the results of the error
||G(Z€(n))H per iteration are given. It can be seen that algorithm (61) yields
quadratic convergence. Using the obtained iterative solution, the high-order
approximate stochastic H,, controller is given as follows.

B 1.5893 9.4531e — 1 4.1393 1.6120 1.8547e —1
| —7.8321le—1 1.7522e —3 2.3204e —1 1.1581 9.5872¢ — 1

4.2214 —2.8374e —2 4.6816e —1 2.1536e — 2 £(t)
2.6205e¢ — 1 9.3331e — 2 2.2279e¢ — 2 2.6668e — 1 '

w® (t)

In addition, when the small parameters €;, ¢ = 1, 2 are unknown, we can
obtain the parameter-independent control as follows by using the similar
technique in section 3.3.

oy (£) = 1.3707  8.778%e —1 3.5978 1.3178 1.3358e —1
PP —7.8269¢ — 1 —4.5742e — 2 1.8744e —1 1.1557 9.1813e — 1
3.5938 —2.5123e —2 1.1803e —1 0 £(t)
2.1534e — 1 1.0543e — 1 0 1.1803e—1 '

This control will also be reliable because they seem to be close.

8 Conclusion

The existing results and recent research trends in the various multimodel-
ing analysis and design methods have been briefly summarized. A thorough
study of both the parameter-independent methodology and the numerical
algorithms revealed the properties of the different methods have been given.
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The following conclusion can be drawn: When the small perturbation pa-
rameters g; are not known, it is strongly recommended that the two-time-
scale decomposition method or descriptor systems approach be used. On
the other hand, as long as the small perturbation parameters ¢; are known,
effort should be made towards finding the exact solutions by means of numer-
ical algorithm. In particular, since the closed-loop solution of the reduced
Nash problem depends on the path, the required solution has to be solved
numerically.

This survey has mostly concentrated on some classical and recent devel-
opments in parameter-independent and computational methods for design-
ing the strategy. Although the choice of topics was necessarily somewhat
limited, there are some topics which deserve further attention. For example,
the mathematical model described by Ito, i.e. differential equations with
Markovian switching in the multimodel situation, is very interesting. This
problem will be addressed in future investigations.
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